
ON A GENERALIZATION OF MULTINOMIAL COEFFICIENTS 
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Eugene E. Kohlbecker, MacMurray Col lege, Jacksonvi l le , I l l ino is 

Let m = n1 + n2 +• • • + nk be a partition of m into k ^ 2 positive inte-
gral parts and let F0 = 0, Ft = 1,- • • , F n = F n - 1 + Fn_2 for n > 2. This is 
known as the Fibonacci sequence. A multinomial coefficient for the Fibonacci 
sequence is defined to be the quotient 

m / nt n2 n k 

[ m ; n l f n 2 f " - , n k ] = II Fj / II F, II Fj • • • II Fj , 
j=i / j=i j=i j=i 

It is the purpose of this paper to show that such quotients are integer 
valued. In order to do this we first establish a representation of F m in terms 
of a linear combination of the F n . . This result is of some interest in itself 
since it contains many of the classic formulae for Fibonacci sequences. 

Theorem 1; Let F0 = 0, Ft = 1, • •• , F n = F n = 1 + Fn_2, n > 2, and let 
m = nj + n2 +• • • + n k be a partition of m into positive integral parts . Then 

k 
Fm = £ G i P I F * i 

i=i 

k 
where Gt = 1, G* = F n + n + . . . n - i , l < i < k; and P t = II Fn.+i , 

1 L L x i=i+i J 

1 <= i < k, P k = 1. J 

For the proof of the theorem we require the following Lemmas: 
Lemma 1; If nt + n2 + • • • + nk and n | + nj + • • . + n k are partitions of m 

into k > 2 positive integral parts where the parts n\, n*, • • • , n k are a per-
mutation of the parts nl s n2s • • • , nk$ then 

I*! i=i 
307 
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where 
G i = F n 1 + n 2 + . . . + n i . r i > 1 < i * k, Gt = 1 ; 

P i = jin^i' * - 1 < k j Pk = 1 ; 

G i = Fnf
1+n|+... +n!_ -1 ' 1 < i ^ k, G\ = 1 ; 

k 
P i = • P F n ! + 1 ' 1:~ l < k > P k = X • 

Proof: Since any permutation of the parts n1,n2,« • ^ n ^ can be obtained by suc-
cessive transpositions of adjacent parts it suffices to show the conclusion for 
the case ng + 1 = ng and ng = ng + 1, n^ = n{ for i * s, s + 1. From the def-
inition of Gj[ and G[ we have Gi = G{ for 1 < i < s and s + 2 < i < k, 
Gs+i = Fn i+n2+.-.+ns„1+ns-i , Gs + 1 = Fn1+n2+... +ns_1+ns + i-i . We also have 
P. = P{ for 1 < i == s - 1 and s + l < i < k , P g = Fns+1+ips+i» a n d P g = 
F n +iPs+i- Thus every term in the unprimed sum equals the corresponding 
term in the primed sum except for the terms where i = s and i = s + 1. Con-
sidering just these terms, we must show that G P F n + G s+ i p s+ i F n +i = 

GTPTFni + G \ P ' Fnt ,< . 
s s n s s+i s+t ns+i 

Gs Ps Fnc
 + G s + i p s + i F n s + 1 = G

s
F n s + i + i P s + i F n s k*s 

+ F
ni+n2+- • • ns-i+ns-^s+lFng+i 

G
s

F n s + 1 + i F n s 

+ (Fns
Fn1+n2+. • • n s _ t + G s F n s r i ) F n s + 1 

F ns F n s + i F n 1 +n 2 + . . .n s . i 
+ G s ^ n S + i ^ F n s

 + F n s + 1
F n s - i ) 

Fns
F%+iFn1+n2+- • • n s - 1 

+ G s F n s + n s + i 

Fns+iF nsFn1+n2+- • • ns„t 

+ G s ( F n s + 1 F n s + 1 + F n s F n s + r l ) 
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= G
s

F % + i F n s + i 

+ (Fns+iFni+ii2+-• • ng-! + G s F n s + r i ) F n s 

= G s F n s + i F n s + 1 

+ Fn1+n2+- • • +n s _ 1 +n s + r i F n s 

= G s F n s + i P s + 1 F n g + 1 

+ Fn1+n2+* • • +ns_1+ns+1-i Ps+i F n s 

s s n
s s+i s+i n

s + i 

where we have used repeatedly the classical formula F m = F
m + 1

F
n

+ F
n - i F m ° 

Lemma 2% If xit + n2 + • • * + % is a partition of m into k > 2positive!: 
integral parts with at least one part (say n s ) greater than 1, then 

£ W * i = £GiPiFn! 
1=1 1=1 1 

where n. = n! for i =1= s . r ; nQ - 1 = nf , n + 1 = n r , s 4= r . and G.,P. , i i ' 3 s s r r l i 
G! and P! are all defined as in Lemma le 

Proof; In view of Lemma 1 we can assume that nt > 1 and show the result for 
the partitions nt + -n2 +. - • + n^ and n| + nj + •.« + n^ where nj = nt - 1, n£ = 
n2 4- 1, n! = n. for 3 < i < k. For this choice,, G^ = G! for i = 1 and 3 < 

, and P. = P! for 1 < i < k. 
- 2 ' 1 1 

Here every term in the unprimed sum equals the corresponding term in 
the primed sum except for i = 1,2. Considering only these terms, 

k k 
GjPiFn i + G2P2Fn2 = (F n i ) n F n j + 1 + ( F n r l F n 2 ) ^ F n j + I 

k 

'SV^V^n^aV 
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= (Fm+nJ n Fni+i 

k 
= ( F n 2 +2 F n r i + F n 2 + i F n r 2 ) ^ Fnj+i 

k k 
= ( F a ) n F n + 1 + ( F ¥ 2 F n t) n F n + 1 

1 j=2 J j=3 J 

= GJ.PjFnj + GjPjFnt 

which completes the proof. 

We now proceed to the proof of the theorem. When m ..= k we have n̂  = 
1, Gj = 1, Gi = Fi_2 for 2 < i < k, Pj = 1 for 1 < i < k and 

k=m m-2 
£ G i p i F n i = F t + E *t = *v+ (Fm - 1 ) = F m 
i=i i=o 

by a well-known result for the Fibonacci sequence. When m = k + 1, all the 
parts are 1 except one part which is 2. By Lemma 1 we can assume that n k = 
2. For this we have Gi = F i - 2 for 1 < i < k, Gt = 1, Pj = FJp-^Fs for 1 
< i < k, P k = 1. Thus 

k 
£ GiPjFn = FsFfc.! + Fk_2 = F k _ t + (Ffc-i + Fk_2) = F k + 1 . 
i=i 

Now assume m > k + 2 and let m = nj + n2 + • • • + n k with nt < n2 < • • • 
< n k . There are two cases, n k > 3 or n k > 2 and n k - 1 > 2. By applying 
Lemma 2 we can reduce the second case to the first. Thus we need only con-
sider ni < n2 < • •'• < nk with nk > 3. We assume that the result; is valid 
for the partitions 

m - 1 = n} + nJL + • • • + n^ where n! = nj , 1 < i < k, n{_ = n, - 1 

m - 2 = n̂ f + n'2T +«... + n" where nT.f = ^ , 1 ^ i < k, n" = n k - 2 
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and show it holds for the partition 

m = nt. + n2 * • • • + nk 

We have Gi = Gt = G{ for 1 < i < k and 

k-i' 

P i = (Fnk)' tt V 1 ' 
k-i 

Pi = <Fnk-i> i I : Fni+i j=i+i J 

for 1 ^ i < k, p
k
 = p k = p

k
 = *• Hence, 

k k 

i~i m-2 ^ i i nj g i i nfJ 

k-i / k-1 \ 
= . § Gi( . 2 i Fnjf i ) (Fnk + Fnjjrl) F .̂ 

+ GkPk<Fnk-i + Fnk~2) 

F = F m m-

E Wl 
1=1 

which is the desired result. 

Utilizing the result of Theorem 1 we prove the following theorem: 
Theorem 2; Let m and r be integers, m ^ r > 2, and let nt + n2 

+ • • • +nk be a partition of m into positive integral parts. 
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Then [ m;nj, n2, • • • , n r ] is an integer. 
Proof: If m = 2, then r = 2, and the only admissible partition has i^ = n2 

= 1. Clearly [2;1,1] is an integer. Now let m > 2 and assume that for 
every partition of m - 1 into positive integers where m - 1 ^ s ^ 2 we have 
that [m - 1; n1 ,n2,--- ,n ] is an integer. If r = m, then each n. = 1, 1 ^ 
i << „r, anoV [m;ri1?n2,-• ° ,n 1 is an integer,, If 2 < r < m then m - 1 ^ r 
^ 2, and by the induction hypothesis [m - l;n4 - l ,n2, • • • , n r ] f [m - l;n1,n2 -
1,* • • , n r ] , • • • , [m - 1; n1?n2,e °° , 1 ^ - l ] are all integers. 

Now 

k 

where we have used Theorem 1 to write F m as a linear combination of the 
F n . , 1 < i < r . The right-hand side is an integer since all the terms are inte-
gers. This completes the proof of the theorem. 

Editorial Comment: The special multinomial coefficient where k = 2, that is , 
for m = nt + n2 , 

m / n i n2 
n Fj / n FJ n Fj , 
j=i ; j=i j = i . 

has been given the fitting name, "Fibonomial coefficient," Fibonomial coef-
ficients appeared in this Quarterly in advanced problem H-4, proposed by 
T. Brennan and solved by J. L. Brown, Oct., 1963, p. 49, and in Brennan's 
paper, "Fibonacci Powers and Pascal 's Triangle in a Matrix," April and October, 
1964. Also, a proof of the theorem of this paper for the case k = 2 appears 
in D. Jar den's Recurring Sequences, p. 45. 

* • • • • 


