ON A GENERALIZATION OF MULTINOMIAL COEFFICIENTS FOR FIBONACCI SEQUENCES

Eugene E. Kohlbecker, MacMurray College, Jacksonville, III inois
Let $m=n_{1}+n_{2}+\cdots+n_{k}$ be a partition of m into $k \geq 2$ positive integral parts and let $F_{0}=0, F_{1}=1, \cdots, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. This is known as the Fibonacci sequence. A multinomial coefficient for the Fibonacci sequence is defined to be the quotient

$$
\left[m ; n_{1}, n_{2}, \cdots, n_{k}\right]=\prod_{j=1}^{m} F_{j} / \prod_{j=1}^{n_{1}} F_{j} \prod_{j=1}^{n_{2}} F_{j} \cdots \prod_{j=1}^{n_{k}} F_{j}
$$

It is the purpose of this paper to show that such quotients are integer valued. In order to do this we first establish a representation of F_{m} in terms of a linear combination of the $F_{n_{i}}$. This result is of some interest in itself since it contains many of the classic formulae for Fibonacci sequences.

Theorem 1: Let $\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1, \cdots, \mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}=1}+\mathrm{F}_{\mathrm{n}-2}, \mathrm{n} \geq 2$, and let $m=n_{1}+n_{2}+\cdots+n_{k}$ be a partition of m into positive integral parts. Then

$$
F_{m}=\sum_{i=1}^{k} G_{i} P_{i} F_{n_{i}}
$$

where $G_{1}=1, G_{i}=F_{n_{1}+n_{2}+\cdots n_{i-1}}-1,1<i \leq k ;$ and $P_{i}=\prod_{j=i+1}^{k} F_{n_{j}+1}$,
$1 \leq i<k, P_{k}=1$.

For the proof of the theorem we require the following Lemmas:
Lemma 1: If $n_{1}+n_{2}+\ldots+n_{k}$ and $n_{1}^{\prime}+n_{2}^{\prime}+\ldots+n_{k}^{\prime}$ are partitions of m into $k \geq 2$ positive integral parts where the parts $n_{1}^{\prime}, n_{2}^{\prime}, \cdots, n_{k}^{\prime}$ are a permutation of the parts $n_{1}, n_{2}, \cdots, n_{k}$, then

$$
\begin{gathered}
\sum_{i \neq 1}^{k} G_{i} P_{i} F_{n_{i}}=\sum_{i=1}^{k} G_{i}^{\prime} P_{i}^{\prime} F_{n_{i}}^{\prime} \\
307
\end{gathered}
$$

where

$$
\begin{aligned}
G_{i}=F_{n_{1}+n_{2}+\ldots+n_{i-1}-1}, & 1<i \leq k, G_{1}=1 ; \\
P_{i}=\prod_{j=1+1}^{k} F_{n_{j+1}}, & 1 \leq i<k, P_{k}=1 ; \\
G_{i}^{\prime}=F_{n_{1}^{\prime}+n_{2}^{\prime}+\cdots+n_{i-1}^{\prime}-1}, & 1<i \leq k, G_{1}^{\prime}=1 ; \\
P_{i}^{\prime}=\prod_{j=i+1}^{k} F_{n_{j}^{\prime}+1}, & 1 \leq i<k, P_{k}^{\prime}=1 .
\end{aligned}
$$

Proof: Since any permutation of the parts $n_{1}, n_{2}, \cdots, n_{k}$ canbe obtained by successive transpositions of adjacent parts it suffices to show the conclusion for the case $n_{S+1}=n_{s}^{\prime}$ and $n_{s}=n_{S+1}^{\prime}, n_{i}=n_{i}^{\prime}$ for $i \neq s, s+1$. From the definition of G_{i} and G_{i}^{\prime} we have $G_{i}=G_{i}^{\prime}$ for $1 \leq i \leq s$ and $s+2 \leq i \leq k$,
 $\mathrm{P}_{\mathbf{i}}=\mathrm{P}_{\mathbf{i}}^{\prime}$ for $1 \leq \mathrm{i} \leq \mathrm{s}-1$ and $\mathrm{s}+1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{P}_{\mathrm{S}}=\mathrm{F}_{\mathrm{n}_{\mathrm{S}+1}+1} \mathrm{P}_{\mathrm{S}+1}$, and $\mathrm{P}_{\mathrm{S}}^{\prime}=$ $\mathrm{F}_{\mathrm{n}_{\mathrm{S}}+1} \mathrm{P}_{\mathrm{S}+1}$. Thus every term in the unprimed sum equals the corresponding term in the primed sum except for the terms where $i=s$ and $i=s+1$. Considering just these terms, we must show that $G_{S} P_{S} F_{n_{S}}+G_{S+1} P_{S+1} F_{n_{S+1}}=$ $G_{S}^{\prime} P_{S}^{\prime} F_{n_{S}^{\prime}}+G_{S+1}^{\prime} P_{S+1}^{\prime} F_{n_{S+1}^{\prime}}$.

$$
\begin{aligned}
& G_{S} P_{S} F_{n_{S}}+G_{S+1} P_{S+1} F_{n_{S+1}}= G_{S} F_{n_{S+1}+1} P_{S+1} F_{n_{S}} \\
&+F_{n_{1}+n_{2}+\cdots \cdot n_{S-1}+n_{S}-1} P_{S+1} F_{n_{S+1}} \\
&= G_{S} F_{n_{S+1}+1} F_{n_{S}} \\
&+\left(F_{n_{S}} F_{n_{1}+n_{2}+\cdots n_{S-1}}+G_{S} F_{n_{S}-1}\right) F_{n_{S+1}} \\
&= F_{n_{S}} F_{n_{S+1}} F_{n_{1}+n_{2}+\cdots \cdot n_{S-1}} \\
&+G_{S}\left(F_{n_{S+1}+1} F_{n_{S}}+F_{n_{S+1}} F_{n_{S}-1}\right) \\
&=F_{n_{S}} F_{n_{S+1}} F_{n_{1}+n_{2}+\cdots \cdot n_{S-1}} \\
&+G_{S} F_{n_{S}+n_{S+1}} \\
&= F_{n_{S+1}} F_{n_{S}} F_{n_{1}+n_{2}+\cdots \cdot n_{S-1}} \\
&+G_{S}\left(F_{n_{S}+1} F_{n_{S+1}}+F_{n_{S}} F_{n_{S+1}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & G_{S} F_{n_{S}+1} F_{n_{S+1}} \\
& +\left(F_{n_{S+1}} F_{n_{1}+n_{2}+\cdots n_{S-1}}+G_{S} F_{n_{S+1}-1}\right) F_{n_{S}} \\
= & G_{S} F_{n_{S}+1} F_{n_{S+1}} \\
& +F_{n_{1}+n_{2}+\cdots+n_{S-1}+n_{S+1}-1} F_{n_{S}} \\
= & G_{S} F_{n_{S}+1} P_{S+1} F_{n_{S+1}} \\
& +F_{n_{1}+n_{2}+\cdots+n_{S-1}+n_{S+1}-1} P_{S+1} F_{n_{S}} \\
= & G_{S}^{\prime} P_{S}^{\prime} F_{n_{S}}+G_{S+1}^{\prime} P_{S+1}^{\prime} F_{n_{S+1}^{\prime}}^{\prime} \quad \cdots
\end{aligned}
$$

where we have used repeatedly the classical formula $F_{m+n}=F_{m+1} F_{n}+F_{n-1} F_{m}$.
Lemma 2: If $n_{1}+n_{2}+\cdots+n_{k}$ is a partition of m into $k \geq 2$ positive: integral parts with at least one part (say n_{S}) greater than 1 , then

$$
\sum_{i=1}^{k} G_{i} P_{i} F_{n_{i}}=\sum_{i=1}^{k} G_{i}^{\prime} P_{i}^{\prime} F_{n_{i}^{\prime}}
$$

where $n_{i}=n_{i}^{\prime}$ for $i \neq s, r ; n_{s}-1=n_{s}^{\prime}, n_{r}+1=n_{r}^{\prime}, s \neq r$, and G_{i}, P_{i}, G_{i}^{\prime} and P_{i}^{\prime} are all defined as in Lemma 1 .

Proof: In view of Lemma 1 we can assume that $n_{1}>1$ and show the result for the partitions $n_{1}+n_{2}+\cdots+n_{k}$ and $n_{1}^{\prime}+n_{2}^{\prime}+\cdots+n_{k}$ where $n_{1}^{\prime}=n_{1}-1, n_{2}^{\prime}=$ $n_{2}+1, n_{i}^{\prime}=n_{i}$ for $3 \leq i \leq k$. For this choice, $G_{i}=G_{i}^{\prime}$ for $i=1$ and $3 \leq$ $\mathrm{i} \leq \mathrm{k}, \quad \mathrm{G}_{2}=\mathrm{F}_{\mathrm{n}_{1}-1}, \mathrm{G}_{2}^{\prime}=\mathrm{F}_{\mathrm{n}_{1}-2}$, and $\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}^{\prime}$ for $1<\mathrm{i} \leq \mathrm{k}$.

Here every term in the unprimed sum equals the corresponding term in the primed sum except for $i=1,2$. Considering only these terms,

$$
\begin{aligned}
G_{1} P_{1} F_{n_{1}}+G_{2} P_{2} F_{n_{2}} & =\left(F_{n_{1}}\right) \prod_{j=2}^{k} F_{n_{j}+1}+\left(F_{n_{1}-1} F_{n_{2}}\right) \prod_{j=3}^{k} F_{n_{j}+1} \\
& =\left(F_{n_{1}} F_{n_{2}+1}+F_{n_{1}-1} F_{n_{2}}\right) \prod_{j=3}^{k} F_{n_{j}+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(F_{n_{1}+n_{2}}\right) \prod_{j=3}^{k} F_{n_{j}+1} \\
& =\left(F_{n_{2}+2} F_{n_{1}-1}+F_{n_{2}+1} F_{n_{1}-2}\right) \prod_{j=3}^{k} F_{n_{j}+1} \\
& =\left(F_{n_{1}-2}\right) \prod_{j=2}^{k} F_{n_{j}+1}+\left(F_{n_{2}+2} F_{n_{1}-1}\right) \prod_{j=3}^{k} F_{n_{j}+1} \\
& =G_{1}^{\prime} P_{1}^{\prime} F_{n_{1}^{\prime}}+G_{2}^{\prime} P_{2}^{\prime} F_{n_{2}^{\prime}}^{\prime}
\end{aligned}
$$

which completes the proof.

We now proceed to the proof of the theorem. When $m=k$ we have $n_{i}=$ $1, G_{1}=1, G_{i}=F_{i-2}$ for $2 \leq i \leq k, P_{i}=1$ for $1 \leq i \leq k$ and

$$
\sum_{i=1}^{k=m} G_{i} P_{i} F_{n_{i}}=F_{1}+\sum_{i=0}^{m-2} F_{i}=F_{1}+\left(F_{m}-1\right)=F_{m}
$$

by a well-known result for the Fibonacci sequence. When $m=k+1$, all the parts are 1 except one part which is 2. By Lemma 1 we can assume that $n_{k}=$ 2. For this we have $G_{i}=F_{i-2}$ for $1<i \leq k, G_{1}=1, P_{i}=F_{2}^{k-i-1} F_{3}$ for 1 $\leq \mathrm{i}<\mathrm{k}, \mathrm{P}_{\mathrm{k}}=1$. Thus

$$
\sum_{i=1}^{k} G_{i} P_{i} F_{n_{i}}=F_{3} F_{k-1}+F_{k-2}=F_{k-1}+\left(F_{k-1}+F_{k-2}\right)=F_{k+1}
$$

Now assume $\mathrm{m} \geq \mathrm{k}+2$ and let $\mathrm{m}=\mathrm{n}_{1}+\mathrm{n}_{2}+\cdots+\mathrm{n}_{\mathrm{k}}$ with $\mathrm{n}_{1} \leq \mathrm{n}_{2} \leq \cdots$ $\leq n_{k}$. There are two cases, $n_{k} \geq 3$ or $n_{k} \geq 2$ and $n_{k-1} \geq 2$. By applying Lemma 2 we can reduce the second case to the first. Thus we need only consider $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ with $n_{k} \geq 3$. We assume that the result is valid for the partitions

$$
\begin{aligned}
& m-1=n_{1}^{\prime}+n_{2}^{\prime}+\cdots+n_{k}: \text { where } \quad n_{i}^{\prime}=n_{i}, 1 \leq i<k, n_{k}^{\prime}=n_{k}-1 \\
& m-2=n_{i}^{\prime \prime}+n_{2}^{\prime \prime}+\cdots+n_{k}^{\prime \prime} \quad \text { where } \quad n_{i}^{\prime \prime}=n_{i}, 1 \leq i<k, n_{k}^{\prime \prime}=n_{k}-2
\end{aligned}
$$

and show it holds for the partition

$$
\mathrm{m}=\mathrm{n}_{1}+\mathrm{n}_{2}+\cdots+\mathrm{n}_{\mathrm{k}}
$$

We have $G_{i}=G_{i}^{\prime}=G_{i}^{\prime \prime}$ for $1 \leq i \leq k$ and

$$
\begin{aligned}
& P_{i}=\left(F_{n_{k}+1}\right) \prod_{j=i+1}^{k-1} F_{n_{j}+1}, \\
& P_{i}^{\prime}=\left(F_{n_{k}}\right) \prod_{j=i+1}^{k-1} F_{n_{j}+1}, \\
& P_{i}^{\prime \prime}=\left(F_{n_{k}-1}\right) \prod_{j=i+1}^{k-1} F_{n_{j}+1}
\end{aligned}
$$

for $1 \leq i<k, \quad P_{k}=P_{k}^{\prime}=P_{k}^{\prime \prime}=1$. Hence,

$$
\begin{aligned}
F_{m}=F_{m-1}+F_{m-2}= & \sum_{i=1}^{k} G_{i}^{\prime} P_{i}^{\prime} F_{n_{i}^{\prime}}
\end{aligned}+\sum_{i=1}^{k} G_{i}^{\prime \prime P_{i}^{\prime \prime} F_{n_{i}^{\prime \prime}}^{\prime}} \begin{aligned}
= & \sum_{i=1}^{k=1} G_{i}\left(\sum_{j=i+1}^{k-1} F_{n_{j}+1}\right)\left(F_{n_{k}}+F_{n_{k}-1}\right) F_{n_{i}} \\
& +G_{k} P_{k}\left(F_{n_{k}-1}+F_{n_{k}-2}\right) \\
= & \sum_{i=1}^{k} G_{i} P_{i} F_{n_{i}},
\end{aligned}
$$

which is the desired result.

Utilizing the result of Theorem 1 we prove the following theorem:
Theorem 2: Let m and r be integers, $m \geq r \geq 2$, and let $n_{1}+n_{2}$ $+\cdots+n_{k}$ be a partition of m into positive integral parts.

Then $\left[\mathrm{m} ; \mathrm{n}_{1}, \mathrm{n}_{2}, \cdots, \mathrm{n}_{\mathrm{r}}\right.$] is an integer.
Proof: If $\mathrm{m}=2$, then $\mathrm{r}=2$, and the only admissible partition has $\mathrm{n}_{1}=\mathrm{n}_{2}$ $=1$. Clearly $[2 ; 1,1]$ is an integer. Now let $m>2$ and assume that for every partition of $m-1$ into positive integers where $m-1 \geq s \geq 2$ we have that $\left[m-1 ; n_{1}, n_{2}, \cdots, n_{s}\right]$ is an integer. If $r=m$, then each $n_{i}=1,1 \leq$ $\mathrm{i} \leq \mathrm{r}$, and $\left[\mathrm{m} ; \dot{n}_{1}, \mathrm{n}_{2}, \cdots, \mathrm{n}_{\mathrm{r}}\right]$ is an integer. If $2 \leq \mathrm{r}<\mathrm{m}$ then $\mathrm{m}-1 \geq \mathrm{r}$ $\geqslant 2$, and by the induction hypothesis $\left[m-1 ; n_{1}-1, n_{2}, \cdots, n_{r}\right],\left[m-1 ; n_{1}, n_{2}-\right.$ $\left.1, \cdots, n_{r}\right], \cdots,\left[m-1 ; n_{1}, n_{2}, \cdots, n_{r}-1\right]$ are all integers.

Now

$$
\left[m ; n_{1}, n_{2}, \cdots, n_{r}\right]=\sum_{i=1}^{k} G_{i} P_{i}\left[m-1 ; n_{1}, \cdots, n_{i-1}, \cdots n_{r}\right]
$$

where we have used Theorem 1 to write F_{m} as a linear combination of the $\mathrm{F}_{\mathrm{n}_{\mathrm{i}}}, 1 \leq \mathrm{i} \leq \mathrm{r}$. The right-hand side is an integer since all the terms are integers. This completes the proof of the theorem.

Editorial Comment: The special multinomialcoefficient where $k=2$, that is, for $m=n_{1}+n_{2}$,

$$
\left.\prod_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{~F}_{\mathrm{j}}\right|_{\prod_{\mathrm{j}=1}^{\mathrm{n}_{1}} \mathrm{~F}_{\mathrm{j}} \prod_{\mathrm{j}=1}^{\mathrm{n}_{2}} \mathrm{~F}_{\mathrm{j}}, ~} ^{\text {, }}
$$

has been given the fitting name, "Fibonomial coefficient," Fibonomial coefficients appeared in this Quarterly in advanced problem $\mathrm{H}-4$, proposed by T. Brennan and solved by J. L. Brown, Oct., 1963, p. 49, and in Brennan's paper, "Fibonacci Powers and Pascal's Triangle in a Matrix," April and October, 1964. Also, a proof of the theorem of this paper for the case $k=2$ appears in D. Jarden's Recurring Sequences, p. 45.

