BINOMIAL SUMS OF FIBONACCI POWERS

JOHN WESSNER, Melbourne, Florida

At the impetus of Professor Hoggatt, a general solution was obtained for summations of the form

$$
\sum_{k=0}^{n}\binom{\mathrm{n}}{\mathrm{k}}(\pm 1)^{\mathrm{k}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{b}}
$$

where $b=2 \mathrm{~m}$. Some suggestions will be made for attacking the problem for odd b , and it is hoped that a complete solution will be forthcoming.

Let us first consider the case where $b=4 \mathrm{p}$. If $\alpha=1 / 2(1+\sqrt{5}), \beta=$ $1 / 2(1-\sqrt{5}), \quad \mathrm{F}_{\mathrm{k}}=\left(\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}\right) /(\alpha-\beta)$, and $\mathrm{L}_{\mathrm{k}}=\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}$, then
$\sum_{k=0}^{n}\binom{n}{k} F_{k}^{4 p}=\sum_{k=0}^{n}\binom{n}{k} 5^{-2 p}\left(\alpha^{k}-\beta^{k}\right)^{4 p}$

$$
=\sum_{k=0}^{n}\binom{n}{k} 5^{-2 p} \sum_{t=0}^{4 p}\binom{4 p}{t}(-1)^{t}\left(\alpha^{4 p-t} \beta^{t}\right)^{k}
$$

$$
=5^{-2 p} \sum_{k=0}^{n}\binom{n}{k}\left\{\sum_{j=0}^{2 p-1}\binom{4 p}{j}(-1)^{j(k+1)}\left[\left(\alpha^{4 p-2 j}\right)^{k}+\left(\beta^{4 p-2 j}\right)^{k}\right]\right.
$$

$$
+\binom{4 p}{2 p}(-1)^{2 p(k+1)}
$$

$$
=5^{-2 p} \sum_{j=0}^{2 p-1}\binom{4 p}{j}(-1)^{j}\left\{\sum_{k=0}^{n}\binom{n}{k}(-1)^{j k^{L}} L_{(4 p-2 j) k}\right\}+5^{-2 p}\binom{4 p}{2 p} 2^{n}
$$

where we have made use of the fact that

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Hence, we have reduced the problem to one involving Lucas numbers and no powers. We must digress to obtain the required Lucas formulas.

Consider

$$
\begin{aligned}
\mathrm{L}(\mathrm{n}, 1, \mathrm{q}) & =\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{~L}_{\mathrm{qk}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}\left(\alpha^{\mathrm{qk}}+\beta^{\mathrm{qk}}\right) \\
& =\left(1+\alpha^{\mathrm{q}}\right)^{\mathrm{n}}+\left(1+\beta^{\mathrm{q}}\right)^{\mathrm{n}}
\end{aligned}
$$

If $q=2 \mathrm{~g}$, then

$$
\begin{aligned}
\mathrm{L}(\mathrm{n}, 1,2 \mathrm{~g}) & \left.=\left\{(\alpha \beta)^{\mathrm{g}}(-1)^{\mathrm{g}}+\alpha^{2 \mathrm{~g}}\right\}^{\mathrm{n}}+(\alpha \beta)^{\mathrm{g}}(-1)^{\mathrm{g}}+\beta^{2 \mathrm{~g}}\right\}^{\mathrm{n}} \\
& =\alpha^{\mathrm{gn}}\left\{\alpha^{\mathrm{g}}+(-1)^{\mathrm{g}} \boldsymbol{g}^{\mathrm{g}}\right\}^{\mathrm{n}}+\beta^{\mathrm{gn}}\left\{(-1)^{\mathrm{g}} \alpha^{\mathrm{g}}+\beta^{\mathrm{g}}\right\}^{\mathrm{n}}
\end{aligned}
$$

The manipulation of this depends upon the parity of g. Let $g=2 r$, or $q=$ 4 r :

$$
\mathrm{L}(\mathrm{n}, 1,4 \mathrm{r})=\left(\alpha^{2 \mathrm{rn}}+\beta^{2 \mathrm{rn}}\right)\left(\alpha^{2 \mathrm{r}}+\beta^{2 \mathrm{r}}\right)^{\mathrm{n}}=\mathrm{L}_{2 \mathrm{rn}} \mathrm{~L}_{2 \mathrm{r}}^{\mathrm{n}}
$$

If, instead, $q=4 r+2$, then for odd values of n we obtain

$$
\begin{aligned}
\mathrm{L}(\mathrm{n}, 1,4 \mathrm{r}+2) & =\left(^{(2 \mathrm{r}+1) \mathrm{n}}+(-1)^{\mathrm{n}} \beta^{(2 \mathrm{r}+1) \mathrm{n}}\right)\left(\alpha^{2 \mathrm{r}+1}-\beta^{2 \mathrm{r}+1}\right)^{\mathrm{n}} \\
& =5^{\frac{1}{2}(\mathrm{n}+1)} \mathrm{F}_{(2 \mathrm{r}+1) \mathrm{n}^{2}} \mathrm{~F}_{2 \mathrm{r}+1}^{\mathrm{n}}
\end{aligned}
$$

For even values of n,

$$
\mathrm{L}(\mathrm{n}, 1,4 \mathrm{r}+2)=5^{\frac{1}{2} \mathrm{n}^{2}}{ }_{(2 \mathrm{r}+1) \mathrm{n}} \mathrm{~F}_{2 \mathrm{r}+1}^{\mathrm{n}}
$$

By the same methods we obtain

$$
\mathrm{L}(\mathrm{n},-1,4 \mathrm{r}+2)=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}(-1)^{\mathrm{k}_{\mathrm{L}}}{ }_{(4 \mathrm{r}+2) \mathrm{k}}=(-1)^{\mathrm{n}_{\mathrm{L}}}{ }_{(2 \mathrm{r}+1) \mathrm{n}^{\mathrm{L}_{2 \mathrm{r}+1}^{\mathrm{n}}},}
$$

and

$$
\mathrm{L}(\mathrm{n},-1,4 \mathrm{r})=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}(-1)^{\mathrm{k}_{\mathrm{L}}} 4 \mathrm{rk}=5^{\frac{1}{2} \mathrm{n}_{\mathrm{L}}}{ }_{2 r n} \mathrm{~F}_{2 \mathrm{r}}^{\mathrm{n}}
$$

for even n, and

$$
\mathrm{L}(\mathrm{n},-1,4 \mathrm{r})=-5^{\frac{1}{2}(\mathrm{n}+1)} \mathrm{F}_{2 \mathrm{rn}} \mathrm{~F}_{2 \mathrm{r}}^{\mathrm{n}}
$$

if n is odd.
Now, let us return to the original problem.

$$
\sum_{k=0}^{n}\binom{n}{k} F_{k}^{4 p}=5^{-2 p}\binom{4 p}{2 p} 2^{n}
$$

$$
\begin{aligned}
& +5^{-2 p} \sum_{j=0}^{2 p-1}\binom{4 p}{j}(-1)^{j} \sum_{k=0}^{n}\binom{n}{k}(-1)^{j k_{L}} L_{(4 p-2 j) k} \\
= & 5^{-2 p}\left\{2^{n}\binom{4 p}{2 p}+\sum_{i=0}^{p-1}\binom{4 p}{2 i} L(n, 1,4[p-i])-\sum_{i=1}^{p}\binom{4 p}{2 i-1} L(n,-1,4[-p-i]+2)\right\} \\
= & 5^{-2 p}\left\{2^{n}\binom{4 p}{2 p}+\sum_{i=0}^{p-1}\binom{4 p}{2 i} L_{2(p-i) n^{2}} L_{2(p-i)}^{n}\right. \\
& \left.-(-1)^{n} \sum_{i=1}^{n}\binom{4 p}{2 i-1} L_{2(p-i) n+n^{2}}^{n} L_{2(p-i)+1}^{n}\right\}
\end{aligned}
$$

Similarly, if $b=4 p+2$,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} F_{k}^{4 p+2}= & 5^{-(2 p+1)} \sum_{k=0}^{n}\binom{n}{k}\left\{\sum _ { j = 0 } ^ { 2 p } (\begin{array} { c }
{ 4 p + 2 } \\
{ j }
\end{array}) (- 1) ^ { j (k + 1) } \left[\left(\alpha^{4 p-2 j+2}\right)^{k}\right.\right. \\
& \left.\left.+\left(\beta^{4 p-2 j+2}\right)^{k}\right]+\binom{4 p+2}{2 p+1}(-1)^{(k+1)(2 p+1)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & 5^{-(2 p+1)} \sum_{j=0}^{2 p}\binom{4 p+2}{j}(-1)^{j} \sum_{k=0}^{n}\binom{n}{k}(-1)^{j k_{L}}{ }_{(4 p-2 j+2) k} \\
& +5^{-(2 p+1)}\binom{4 p+2}{2 p+1} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k+1} \\
= & 5^{-(2 p+1)}\left\{\sum_{i=0}^{p}\binom{4 p+2}{2 i} L(n, 1,4[p-i]+2)-\sum_{i=0}^{p-1}\binom{4 p+2}{2 i+1} L(n,-1,4[p-i])\right\} .
\end{aligned}
$$

For summations involving alternating signs the same method of analysis gives similar results.

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k_{F}} F_{k}^{4 p}= & 5^{-2 p}\left\{\sum_{i=0}^{p-1}\binom{4 p}{2 i} L(n,-1,4[p-i])\right. \\
& \left.-\sum_{i=1}^{p}\binom{4 p}{2 i-1} L(n, 1,4[p-i]+2)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} & (-1)^{k_{k}} F_{k}^{4 p+2}=5^{-(2 p+1)}\left\{\sum_{i=0}^{p}\binom{4 p+2}{2 i} L(n,-1,4[p-i]+2)\right. \\
& \left.-\sum_{i=0}^{p-1}\binom{4 p+2}{2 i+1} L(n, 1,4[p-i])-\binom{4 p+2}{2 p+1} 2^{n}\right\}
\end{aligned}
$$

Finally, a word regarding summations for odd powers of F_{k}. For powers $\mathrm{b} \geqslant 5$, the problem still reduces to a binomial sum involving Lucas numbers whose subscripts are in an arithmetic progression, but the expressions $\left(1+\alpha^{q}\right)$ and $\left(1+\beta^{q}\right)$ cannot be reduced in a manner similar to that used for even q. Surely they are reducible, and it is hoped that the expression obtained above may be extended to odd powers.

