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111 recent years, a number of papers appeared on the subject of generalization of the Morgan-
Voyce (Mr) polynomials (see5 e.g., Andre-Jeannin [l]-[3] and Horadam [4]-[7]). The richness of 
results in these works prompted our Investigation on this subject. We further generalized the M-
polynomials in a particular way and obtained some new relations by means of the line-sequential 
formalism developed earlier (see, e.g., [8]-[10]). It was also shown that many known results were 
obtainable from these relations In a simple and systematic manner. 

The recurrence relation of the M-polyeomials is given by 
~-m.n + (2 + x)mn+l = mn+2, » G Z , (1) 

where mn denotes the /1th term in the line-sequence; and c = -1 and b = 2 + x are the parametric 
coefficients with x being the polynomial variable. The pair of basis, see (1.3a) and (1.4a) in [9], is 
given by, respectively, 

Ml50(-l,2 + x):... ,[l,0]?-l,-(2 + x),-(3 + 4x + x2),..., (2a) 

M 0 J ( - l ,2 + x):...,[0,l],2 + x,3 + 4x + x2,4 + 10x + 6x2+x3,..., (2b) 

which spans the two-dimensional M-vector space. 
Let the /1th element of the line-sequence Muj be denoted by mn[i, j], then by the definition of 

translation operation, (3.1) in [8], we have 
Trnjl, 0] = mn+l[\ 0]; Tmj[091] = ̂ w[0,1]. (3a) 

From (2a) and (2b), obviously the following translatlonal relations hold: 
7 M l 0 = - M 0 J , IM0A = Ml2^ (3b) 

where we have applied the rule of scalar multiplication In [8]. The first relation above also states 
the translatlonal relation between the two basis line-sequences. In terms of the elements, It takes 
the form 

^+1[1,0] = ^ J 0 , 1 ] , (3c) 

In agreement with formula (1.2b) in [10]. Also, by the parity relations (1.3a) and (1.3b) in [10], 
we have, between the elements In the positive and negative branches of each of the two basis line-
sequences, the following relations, respectively, 

M _ J 1 , 0 ] - - ^ + 2 [ 1 , 0 ] , (4a) 

«ao,i]=-»ao,i]. (4b) 
The negative branches In (2a) and (2b) can be obtained by applying these relations, respectively. 

Let the generating pair of a line-sequence be [i,j], where j = i + sx + r, and / , 5 , r e Z , 
denote a set of parametric constants. This generating pair specifies a corresponding family of 
line-sequences lying in the M-space. We call this way of generalization adopted by Andre-Jeannin 
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[1] the generalization of the first kind, hence the title of this report. Later, Andre-Jeannin [2] also 
generalized the recurrence relation (1); thus, from the line-sequential point of view, generalized 
the M-space itself We call this latter way of generalization the generalization of the second kind. 
In this report we shall concern ourselves with the former case only. The latter case will be dis-
cussed in a separate report. 

Table 1 below gives the line-sequential conversion of those polynomial sequences treated in 
this report. The parametric coefficients in the Morgan-Voyce line-sequence are implicit in the 
designation of the letter M and henceforth omitted. There appears in the literature more than one 
set of conventions, we shall stick to those adopted in this table. 

TABLE 1. Line-Sequences and Elements Conversion 

Polynomials Elements Line-Sequences References 

B„(x) 

*»(*) 
Pjf\x) 
<£\x) 
#-">(x) 

u„(y) 

m„[i,i + sx+r] 
m„[0,l] 

iH,[l,l] 
m„[l,l + x + r] 

m„[2,2 + x+r] 

mn[u,u + x+r] 

^[0,1] 

-"^i, i+sx+r 

M.,1 

Ki 
Ml,l+x+r 

™2,2+x+r 

•"*«, u+x+r 

H , i 

(5a), (56) 
[11] 

[11] 

[1] 
[4] 

[5] 

[11] 

The line-sequence MUj can be decomposed according to the rules of linear addition and 
scalar multiplication, see [8], as 

M,i+«+r = M,l+**r+('"-l)M,l- (5a) 
In terms of the elements, this becomes 

mn[i, i + sx+r] = mn[\ l + sx+r] + (i- l)mn[l, 1]. (5b) 

Putting i = u, 5 = 1, and using the conversion in Table 1, we obtain 

tf\X) = p(r\X) + (u-l)b„(x). (5C) 

This is Theorem 1 in [5] and, equivalently, Theorem 1 in [6]. See the Remark below for further 
explanation. 

We may also decompose Mtj in the following manner: 
Mi,i+sx+r = Mf2/+« + ( ' , - 0 H , i . (6a) 

Let i = s = l9 then we obtain 

M, i+*+r = M, 2+x + (r- 1)M>. i • (6b) 
In terms of the elements, applying (3 a) and (3 b), we find 

mn[l, 1 + x + r] = mn+l[0,1] + (r - l)mn[0,1]. (6c) 
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Applying conversions in Table 1, we obtain 

P^(x) = Bn+l(x) + (r-l)Bn(x) (6d) 
or, equivalently, 

&Hx) = Un+l{^y{r-l)Un[^y (6e) 
which is (4.6) in [5]. 

If we decompose MUj in the following manner, 
MiJ+sx+r = M l 2 + „ + ( /-2+r)Af0 f l + ( / - l )M1 > 0 , (7a) 

and let / = u and 5 = 1 . Then, using (3b) and (3c), we obtain 

which, in terms of the elements, becomes 

mn[u, u + x + r ] = mn+llO, 1] + (u - 2 + r)mn[0,1] - (u - l K - i P , 1] - (7b) 

Using the conversions in Table 1, we obtain 

# • «>(*) = Bn+l(x) + (u-2+r)B„(x) -(u- \)Bn_^) 

or, equivalently, 

^r'")W = ^ + i ( ^ ) + ("-2 + r)f/^2±£J-(M-l)^_1^2±£J. (7c) 

This is Theorem 2 in [5] (with a minor typographical correction). It is also valid for negative 
values of the index n (ref. Theorem 2 in [6]). See the Remark below. 

We may also decompose MUj in the following manner: 

MtJ =iMh0+jM0A (8a) 

= iM^ 0 +iM0f j + sxM0f j + rM0j v (8b) 

Following Andre-Jeannin [1] and Horadam [4], we define 

k 

where the notation has been modified slightly for typographical convenience but is otherwise 
easily recognizable as compared to the relating symbols used in [1] and [4]. It is known (see [1]) 
that the coefficients of x in the basis line-sequence M0tl are generated by the combinatorial func-
tion (2^+1); by the translational relation (3b), the coefficients in the complementary basis line-
sequence M1>0 are then generated by -("2*+"/). Substituting into (8b), using Pascal's theorem, we 
obtain the general coefficient formula: 

/• \ c xfn + k-i) , fn + k\t (n + k^\ / m 
m„tk(t,s,r) = (i-s)[ 2k y\2k ) + r[2k + \} <9> 

Repeated use of Pascal's theorem leads to relations for some special cases, following are 
some important examples. 
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Example 1: Let / = 1 and 5 = 1; we obtain formula (9) in [1]: 
m^r) = (%kyr(Zk\\). (10) 

Example 2: Let i = 2 and s = 1; we obtain Theorem 1 in [4]: 

^.ftW-("+£->("a*M»+*i} <»> 
Example 3: Let i = w and 5 = 1; we obtain formula (2.12) in [5]: 

m„,t(„,U) = <»-.)("+
2*->)+(»2

+/)+r(»;/) (,2) 

Example 4: Applying the "negative whole" formula 

(which has its origin in the reflection symmetry of the Pascal array) to (9), we obtain the equiva-
lent formula for - n \ 

^ft^-^-i'H^i-'HiVi} <:3) 

Putting i-u and s - 1, we see that it reduces to 

m_.>^) = (»-l)(-/)f+^')-r(27+*), (14) 
which is equation (2.9) in [6]. And so forth. 

It is easy to verify that 

("tKal-^'H"^3)- <l5) 
Using this identity, we obtain 

mn,kQ> 5> r ) = 2mn-lk(*> S> T) ~ mn-2,k(j> S> V) + mn-l,k-lQ> s , r l 0 6 ) 

This reduces to (7) in [1] if i = s = 1; to (2.10) in [4] if i = 2 and 5 = 1; and to (2.10) in [5] if/ = u 
and 5 = 1, 

Applying the "negative whole" formula to (15), we obtain 

(fH-i'^^!} OT) 
Using this identity, we obtain 

m-n,k(f>5>r) = 2 m-*-i, *&s,r)-m_„_2 k(/,5,r) + m_n_hk_x(i9s,r), (18) 

which reduces to (2.7) in [6] if i = u and 5 = 1. 

Remark: Both identities (9) and (13) and identities (15) and (17) are valid for both positive 
and negative values of index n, a property intrinsic to the line-sequential formalism. Since (5a) is 
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a line-sequential formulation, this means that equation (5c) is valid irrespective of the positivity or 
the negativity of the index /?. Therefore, equation (5c) is equivalent to both Theorem 1 in [5] and 
Theorem 1 in [6]. Similarly, equation (7c) is equivalent to Theorem 2 in [5] and also equivalent 
to Theorem 2 in [6]. 

There are some special cases that are worth our attention. 
Case 1. Let / = s-r in (9). We then have 

^nA^r,s,r) = r^k
k-iys^k

kyra^k+satX. (19) 

This translates into the decomposition formula 

MUJ = (s-r)Ml0 + s(\ + x)M0A. (20) 

The polynomial line-sequence is as follows: 

Ms_r^+x)(-l,2 + x):...,[s-r,s(l + x)],s+r + 3sx + sx2, 

$ + 2r + (6$ + r)x + 5sx2 +$x3,.... 

Case 20 Let s = r in (9). We then have 

m„^i, r, r) = </ - r ) ( » + . * " ̂ r ( ^ V ) - <t - » £ U + « & • (22) 

This translates into the decomposition formula 
MUj = iMl0 + (i+r(l + x))M0A. (23) 

The polynomial line-sequence is as follows: 

M,(/+r(l+*))(-U+ (24) 

Case 3 (a special case of Case 2). Let i = 0 and s = r in (9). Then we have 

i»^r,r) = r((»iVlO+("i*)) = r^*+^>- (25) 

This translates into the decomposition formula? from (23), 
MUj^r(\ + x)M^ (26) 

Hence, this reduces to a multiple of the second basis. The polynomial line-sequence is as follows: 

MWx)(-\M2x):...Mr{\+ (27) 

Case 4. Let i = 2r and s = r in (9). We then have 

m^(2 r , r , r ) = r ( ( " + ^ - 1 ) + ( " ^ 1
1 ) ] = r ( ^ - ^ + ^ ^ (28) 

where hf\ is as given in Table 2 below. This translates into the decomposition formula 

^ . rp+x) =K2Mls0-f (3 + x)M0J). (29) 

The polynomial line-sequence is as follows: 
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M 2 r r p + x ) ( - l , l + 2x):...,[2r,r(3 + x)],r^ (30) 

Note that, for -w, we also have, from (28), 

>u.<?'.'.')-r((-it)+("+i-1)-(i+
+*))-'e,B-|a^ <31> 

where bfft. is as given in Table 2 below. And so forth. 

Table 2 is a compilation of some conversion relations for convenience of reference. 

TABLE 2. Conversion Relations 

Relations References 

m„ *(/, s, r) = (i - s)ai% k + sdjft +ra<,\ k [see(9)] 

mn,t(Ll,0) = ̂ * ) = <0i [1] 

«V * a 1> r) = ( " + / ) + r ^ ) = a ^ [1] 

mn,t(2,u)=(»^>(^/)+(2rA)=e [4] 

^ft^)=("+i->b*)+<i+
+*)=^ C4] 
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