AN ALTERNATE PROOF OF A THEOREM OF J. EWELL

Neville Robbins
Math. Department, San Francisco State University, San Francisco, CA 94231
E-mail: robbins@math.sfsu.edu
(Submitted February 2000-Final Revision April 2000)

Let $t_{r}(n)$ denote the number of representations of n as a sum of r triangular numbers. In [1], J. Ewell derived a sextuple product identity, one of whose consequences is

Theorem 1: For each integer $n \geq 0$,

$$
t_{4}(n)=\sigma(2 n+1)
$$

where σ denotes the arithmetical sum-of-divisors function.
In this note we present an alternate proof of Theorem 1.
Proof: Clearly, n is a sum of four triangular numbers if and only if $8 n+4$ is a sum of the squares of four odd positive integers. Let $r_{4}(n)$ denote the number of representations of n as a sum of four squares, while $s_{4}(n)$ denotes the number of representations of n as the sum of four odd squares. An elementary argument shows that, if $8 n+4$ is a sum of four squares, then these squares must all have the same parity. It is easily seen that

$$
8 n+4=\sum_{i=1}^{4}\left(2 b_{i}\right)^{2}
$$

if and only if

$$
2 n+1=\sum_{i=1}^{4} b_{i}^{2} .
$$

Therefore, we have

$$
\begin{aligned}
s_{4}(8 n+4) & =r_{4}(8 n+4)-r_{4}(2 n+1)=8\left(\sum\{d: d \mid(8 n+4), 4 \nmid d\}-\sum\{d: d \mid(2 n+1)\}\right) \\
& =8(\sigma(4 n+2)-\sigma(2 n+1))=16 \sigma(2 n+1),
\end{aligned}
$$

according to a well-known formula of Jacobi ([2], Theorem 386, p. 312). Therefore, the number of representations of $8 n+4$ as the sum of the squares of four odd positive integers is

$$
\frac{1}{16} s_{4}(8 n+4)=\sigma(2 n+1)
$$

from which the conclusion follows.

REFERENCES

1. J. A. Ewell. "Arithmetical Consequences of a Sextuple Product Identity." Rocky Mountain J. Math. 25 (1995):1287-93.
2. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: Oxford University Press, 1960.

AMS Classification Number: 11P83

