ON THE NUMBER OF PARTITIONS INTO AN EVEN AND ODD NUMBER OF PARTS

Neville Robbins
Mathematics Department, San Francisco State University, San Francisco, CA 94132
E-mail: robbins @math.sfsu.edu
(Submitted February 2000-Final Revision July 2000)

INTRODUCTION

Let $q_{i}^{e}(n), q_{i}^{o}(n)$ denote, respectively, the number of partitions into n evenly many, oddly many parts, with each part occurring at most i times. Let $\Delta_{i}(n)=q_{i}^{e}(n)-q_{i}^{o}(n)$. Let $\omega(j)=$ $j(3 j-1) / 2$. It is well known that

$$
\Delta_{1}(n)= \begin{cases}(-1)^{n} & \text { if } n=\omega(\pm j) \\ 0 & \text { otherwise }\end{cases}
$$

Formulas for $\Delta_{i}(n)$ were obtained by Hickerson [2] in the cases $i=3, i$ even; by Alder \& Muwafi [1] in the cases $i=5,7$; by Hickerson [3] for i odd. In this note, we present a simpler formula for $\Delta_{i}(n)$, where i is odd, than that given in [3]. As a consequence, we obtain two apparently new recurrences concerning $q(n)$.

Remark: Note that, if f denotes any partition function, then we define $f(\alpha)=0$ if α is not a nonnegative integer.

PRELIMINARIES

Definition 1: If $r \geq 2$, let $b_{r}(n)$ denote the number of r-regular partitions of n, i.e., the number of partitions of n into parts not divisible by r, or equivalently, the number of partitions of n such that each part occurs less than r times.

Let $x \in C,|x|<1$. Then we have

$$
\begin{gather*}
\prod_{n \geq 1}\left(1-x^{n}\right)=1+\sum_{k \geq 1}(-1)^{k}\left(x^{\omega(k)}+x^{\omega(-k)}\right), \tag{1}\\
\sum_{n \geq 0} b_{r}(n) x^{n}=\prod_{n \geq 1} \frac{1-x^{r n}}{1-x^{n}}, \tag{2}\\
\sum_{n \geq 0} \Delta_{i}(n) x^{n}=\prod_{n \geq 1} \frac{1+(-1)^{i} x^{(i+1) n}}{1+x^{n}}, \tag{3}\\
\Delta_{3}(n)= \begin{cases}(-1)^{n} & \text { if } n=j(j+1) / 2, \\
0 & \text { otherwise. }\end{cases} \tag{4}
\end{gather*}
$$

Theorem 1: If $r \geq 2$, then

$$
\Delta_{2 r-1}(n)=b_{r}\left(\frac{n}{2}\right)+\sum_{k \leq 1}\left(-1^{k}\right)\left\{\left(b_{r}\left(\frac{n-\omega(k)}{2}\right)+b_{r}\left(\frac{n-\omega(-k)}{2}\right)\right)\right\} .
$$

Proof: Invoking (3), (2), and (1), we have

$$
\begin{aligned}
\sum_{n \leq 0} \Delta_{2 r-1}(n) x^{n} & =\prod_{n \geq 1} \frac{1-x^{2 r n}}{1+x^{n}} \\
& =\prod_{n \geq 1} \frac{1-x^{2 r n}}{1-x^{2 n}} \prod_{n \geq 1}\left(1-x^{n}\right)=\left(\sum_{n \geq 0} b_{r}\left(\frac{n}{2}\right) x^{n}\right) \prod_{n \geq 1}\left(1-x^{n}\right) \\
& =\sum_{n \geq 0}\left(b_{r}\left(\frac{n}{2}\right)+\sum_{k \geq 1}(-1)^{k}\left\{\left(b_{r}\left(\frac{n-\omega(k)}{2}\right)+b_{r}\left(\frac{n-\omega(-k)}{2}\right)\right)\right\}\right) x^{n} .
\end{aligned}
$$

The conclusion now follows by matching coefficients of like powers of x.

Theorem 2.

(a) $q(n)+\sum_{k \geq 1}(-1)^{k}\left\{q\left(n-\frac{\omega(k)}{2}\right)+q\left(n-\frac{\omega(-k)}{2}\right)\right\}= \begin{cases}1 & \text { if } n=j(j+1) / 4, \\ 0 & \text { otherwise. }\end{cases}$
(b) $q(n)+\sum_{k \geq 2}(-1)^{k-1}\left\{q\left(n+\frac{1-\omega(k)}{2}\right)+q\left(n+\frac{1-\omega(-k)}{2}\right)\right\}= \begin{cases}1 & \text { if } n=j(j+3) / 4, \\ 0 & \text { otherwise. }\end{cases}$

Proof: Apply Theorem 1 with $r=2$, noting that $b_{2}(n)=q(n)$. This yields

$$
q\left(\frac{n}{2}\right)+\sum_{k \geq 1}(-1)^{k}\left\{q\left(\frac{n-\omega(k)}{2}\right)+q\left(\frac{n-\omega(-k)}{2}\right)\right\}=\Delta_{3}(n) .
$$

If we invoke (4) and replace n by $2 n$, we get (a); similarly, if we replace n by $2 n+1$, we get (b).
Since it is easily seen that $2 \mid \omega(k)$ iff $k \equiv 0,3(\bmod 4)$, we may rewrite Theorem 2 in a fraction-free form as follows.

Theorem 2*:

(a) $q(n)-q(n-1)+\sum_{i \geq 1}(q(n-(4 i-1)(3 i-1))+q(n-(n-(4 i+1)(3 i+1)))$

$$
-\sum_{i \geq 1}(q(n-i(12 i-1))+q(n-i(12 i+1)))= \begin{cases}1 & \text { if } n=j(j+1) / 4, \\ 0 & \text { otherwise }\end{cases}
$$

(b) $q(n)+\sum_{i \geq 1} q(n-i(12 i-5))+q(n-i(12 i+5))-\sum_{i \geq 1}(q(n-(4 i-3)(3 i-1))$

$$
+q(n-(4 i-1)(3 i-2)))= \begin{cases}1 & \text { if } n=j(j+3) / 4, \\ 0 & \text { otherwise } .\end{cases}
$$

REFERENCES

1. H. L. Alder \& A. Muwafi. "Identities Relating the Number of Partitions into an Even and Odd Number of Parts." The Fibonacci Quarterly 13.2 (1975):147-49.
2. D. R. Hickerson. "Identities Relating the Number of Partitions into an Eve and Odd Number of Parts." J. Comb. Theory, Series A, 15 (1973):351-53.
3. D. R. Hickerson. "Identities Relating the Number of Partitions into an Eve and Odd Number of Parts, II." The Fibonacci Quarterly 16.1 (1978):5-6.

AMS Classification Number: 11P83

