THE PROBABILITY THAT \boldsymbol{k} POSITIVE INTEGERS ARE PAIRWISE RELATIVELY PRIME

László Tóth

University of Pécs, Institute of Mathematics and Informatics, Ifjúság u. 6, H-7624 Pécs, Hungary
E-mail: 1toth@math.ttk.pte.hu
(Submitted October 1999-Final Revision July 2000)

1. INTRODUCTION

In [3], Shonhiwa considered the function

$$
G_{k}(n)=\sum_{\substack{1 \leq a_{1}, \ldots, a_{k} \leq n \\\left(a_{1}, \ldots, a_{k}\right)=1}} 1,
$$

where $k \geq 2, n \geq 1$, and asked: "What can be said about this function?" As a partial answer, he showed that

$$
G_{k}(n)=\sum_{j=1}^{n} \sum_{d \mid j} \mu(d)\left[\frac{n}{d}\right]^{k-1},
$$

where μ is the Möbius function (see [3], Theorem 4).
There is a more simple formula, namely,

$$
\begin{equation*}
G_{k}(n)=\sum_{j=1}^{n} \mu(j)\left[\frac{n}{j}\right]^{k}, \tag{1}
\end{equation*}
$$

leading to the asymptotic result

$$
G_{k}(n)=\frac{n^{k}}{\zeta(k)}+ \begin{cases}O(n \log n), & \text { if } k=2, \tag{2}\\ O\left(n^{k-1}\right), & \text { if } k \geq 3,\end{cases}
$$

where ζ denotes, as usual, the Riemann zeta function. Formulas (1) and (2) are well known (see, e.g., [1]). It follows that

$$
\lim _{n \rightarrow \infty} \frac{G_{k}(n)}{n^{k}}=\frac{1}{\zeta(k)},
$$

i.e., the probability that k positive integers chosen at random are relatively prime is $\frac{1}{\zeta(k)}$.

For generalizations of this result, we refer to [2].
Remark 1: A short proof of (1) is as follows: Using the following property of the Möbius function,

$$
G_{k}(n)=\sum_{1 \leq a_{1}, \ldots, a_{k} \leq n} \sum_{d \mid\left(a_{1}, \ldots, a_{k}\right)} \mu(d),
$$

and denoting $a_{j}=d b_{j}, 1 \leq j \leq k$, we obtain

$$
G_{k}(n)=\sum_{d=1}^{n} \mu(d) \sum_{1 \leq b_{1}, \ldots, b_{k} \leq n / d} 1=\sum_{d=1}^{n} \mu(d)\left[\frac{n}{d}\right]^{k} .
$$

In what follows, we investigate the question: What is the probability A_{k} that k positive integers are pairwise relatively prime?

For $k=2$ we have, of course, $A_{2}=\frac{1}{\zeta(2)}=0.607 \ldots$ and for $k \geq 3, A_{k}<\frac{1}{\zeta(k)}$. Moreover, for large $k, \frac{1}{\zeta(k)}$ is nearly 1 and A_{k} seems to be nearly 0 .

The next Theorem contains an asymptotic formula analogous to (2), giving the exact value of A_{k}.

2. MAIN RESULTS

Let $k, n, u \geq 1$ and let

$$
P_{k}^{(u)}(n)=\sum_{\substack{1 \leq a_{1}, \ldots, a_{k} \leq n \\\left(a_{i}, a_{j} j=1, i \neq j \\\left(a_{i}, u\right)=1\right.}} 1
$$

be the number of k-tuples $\left\langle a_{1}, \ldots, a_{k}\right\rangle$ with $1 \leq a_{1}, \ldots, a_{k} \leq n$ such that a_{1}, \ldots, a_{k} are pairwise relatively prime and each is prime to u.

Our main result is the following
Theorem: For a fixed $k \geq 1$, we have uniformly for $n, u \geq 1$,

$$
\begin{equation*}
P_{k}^{(u)}(n)=A_{k} f_{k}(u) n^{k}+O\left(\theta(u) n^{k-1} \log ^{k-1} n\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{k-1}\left(1+\frac{k-1}{p}\right), \\
f_{k}(u)=\prod_{p \mid u}\left(1-\frac{k}{p+k-1}\right),
\end{gathered}
$$

and $\theta(u)$ is the number of squarefree divisors of u.
Remark 2: Here $f_{k}(u)$ is a multiplicative function in u.
Corollary 1: The probability that k positive integers are pairwise relatively prime and each is prime to u is

$$
\lim _{n \rightarrow \infty} \frac{P_{k}^{(u)}(n)}{n^{k}}=A_{k} f_{k}(u) .
$$

Corollary 2: $(u=1)$ The probability that k positive integers are pairwise relatively prime is

$$
A_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{k-1}\left(1+\frac{k-1}{p}\right)
$$

3. PROOF OF THE THEOREM

We need the following lemmas.
Lemma 1: For every $k, n, u \geq 1$,

$$
P_{k+1}^{(u)}(n)=\sum_{\substack{j=1 \\(j, u)=1}}^{n} P_{k}^{(j u)}(n)
$$

Proof: From the definition of $P_{k}^{(u)}(n)$, we immediately have

$$
P_{k+1}^{(u)}(n)=\sum_{\substack{a_{k+1}=1 \\\left(a_{k+1}, u\right)=1}}^{n} \sum_{\substack{1 \leq a_{1}, \ldots, a_{k} \leq n \\\left(a_{i}, a_{j}\right)=1, i \neq j \\\left(a_{i}, a_{k+1}\right)=1 \\\left(a_{i}, u\right)=1}} 1=\sum_{\substack{a_{k+1}=1 \\\left(a_{k+1}, u\right)=1}}^{n} P_{k}^{\left(u a_{k+1}\right)}(n)=\sum_{\substack{j=1 \\(j, u)=1}}^{n} P_{k}^{(j u)}(n) .
$$

Lemma 2: For every $k, u \geq 1$,

$$
f_{k}(u)=\sum_{d \mid u} \frac{\mu(d) k^{\omega(d)}}{\alpha_{k}(d)}
$$

where

$$
\alpha_{k}(u)=u \prod_{p \mid u}\left(1+\frac{k-1}{p}\right)
$$

and $\omega(u)$ stands for the number of distinct prime factors of u.
Proof: By the multiplicativity of the involved functions, it is enough to verify for $n=p^{a}$ a prime power:

$$
\sum_{d \mid p^{a}} \frac{\mu(d) k^{\omega(d)}}{\alpha_{k}(d)}=1-\frac{k}{p}\left(1+\frac{k-1}{p}\right)^{-1}=1-\frac{k}{p+k-1}=f_{k}\left(p^{a}\right)
$$

Note that, for $k=2, \alpha_{2}(u)=\psi(u)$ is the Dedekind function.
Lemma 3: For $k \geq 1$, let $\tau_{k}(n)$ denote, as usual, the number of ordered k-tuples $\left\langle a_{1}, \ldots, a_{k}\right\rangle$ of positive integers such that $n=a_{1} \cdots a_{k}$. Then

$$
\begin{gather*}
\sum_{n \leq x} \frac{\tau_{k}(n)}{n}=O\left(\log ^{k} x\right) \tag{a}\\
\sum_{n>x} \frac{\tau_{k}(n)}{n^{2}}=O\left(\frac{\log ^{k-1} x}{x}\right) \tag{4}
\end{gather*}
$$

Proof:
(a) Apply the familiar result $\sum_{n \leq x} \tau_{k}(n)=O\left(x \log ^{k-1} x\right)$ and partial summation.
(b) By induction on k. For $k=1, \tau_{1}(n)=1, n \geq 1$, and

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n^{2}}=\zeta(2)+O\left(\frac{1}{x}\right) \tag{6}
\end{equation*}
$$

is well known. Suppose that

$$
\sum_{n \leq x} \frac{\tau_{k}(n)}{n^{2}}=\zeta(2)^{k}+O\left(\frac{\log ^{k-1} x}{x}\right)
$$

Then, from the identity $\tau_{k+1}(n)=\sum_{d \mid n} \tau_{k}(d)$, we obtain

$$
\begin{aligned}
\sum_{n \leq x} \frac{\tau_{k+1}(n)}{n^{2}} & =\sum_{d e \leq x} \frac{\tau_{k}(e)}{d^{2} e^{2}}=\sum_{d \leq x} \frac{1}{d^{2}} \sum_{e \leq x / d} \frac{\tau_{k}(e)}{e^{2}} \\
& =\sum_{d \leq x} \frac{1}{d^{2}}\left(\zeta(2)^{k}+O\left(\left(\frac{x}{d}\right)^{-1} \log ^{k-1} \frac{x}{d}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\zeta(2)^{k} \sum_{d \leq x} \frac{1}{d^{2}}+O\left(\frac{\log ^{k-1} x}{x} \sum_{d \leq x} \frac{1}{d}\right) \\
& =\zeta(2)^{k}\left(\zeta(2)+O\left(\frac{1}{x}\right)\right)+O\left(\frac{\log ^{k-1} x}{x} \log x\right)
\end{aligned}
$$

by (6), and we get the desired result (5).
Now, for the proof of the Theorem, we use induction on k. For $k=1$, we have the Legendre function

$$
\begin{aligned}
P_{1}^{(u)}(n) & =\sum_{\substack{1 \leq a \leq n \\
(a, u)=1}} 1=\sum_{a=1}^{n} \sum_{d \mid(a, u)} \mu(d)=\sum_{a=1}^{n} \sum_{\substack{d|a \\
d| u}} \mu(d) \\
& =\sum_{d \mid u} \mu(d) \sum_{1 \leq j \leq n / d} 1=\sum_{d \mid u} \mu(d)\left[\frac{n}{d}\right]=\sum_{d \mid u} \mu(d)\left(\frac{n}{d}+O(1)\right) \\
& =n \sum_{d \mid u} \frac{\mu(d)}{d}+O\left(\sum_{d \mid u} \mu^{2}(d)\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
P_{1}^{(u)}(n)=\sum_{\substack{a=1 \\(a, u)=1}}^{n} 1=n \frac{\phi(u)}{u}+O(\theta(u)) \tag{7}
\end{equation*}
$$

and (3) is true for $k=1$ with $A_{1}=1, f_{1}(u)=\frac{\phi(u)}{u}, \phi$ denoting the Euler function.
Suppose that (3) is valid for k and prove it for $k+1$. From Lemma 1, we obtain

$$
\begin{align*}
P_{k+1}^{(u)}(n) & =\sum_{\substack{j=1 \\
(j, u)=1}}^{n} P_{k}^{(j u)}(n)=\sum_{\substack{j=1 \\
(j, u)=1}}^{n}\left(A_{k} f_{k}(j u) n^{k}+O\left(\theta(j u) n^{k-1} \log ^{k-1} n\right)\right) \tag{8}\\
& =A_{k} f_{k}(u) n^{k} \sum_{\substack{j=1 \\
(j, u)=1}}^{n} f_{k}(j)+O\left(\theta(u) n^{k-1} \log ^{k-1} n \sum_{j=1}^{n} \theta(j)\right)
\end{align*}
$$

Here $\sum_{j=1}^{n} \theta(j) \leq \sum_{j=1}^{n} \tau_{2}(j)=O(n \log n)$, where $\tau_{2}=\tau$ is the divisor function.
Furthermore, by Lemma 2,

$$
\sum_{\substack{j=1 \\(j, u)=1}}^{n} f_{k}(j)=\sum_{\substack{d e j \leq n \\(j, u)=1}} \frac{\mu(d) k^{\omega(d)}}{\alpha_{k}(d)}=\sum_{\substack{d \leq n \\(d, u)=1}} \frac{\mu(d) k^{\omega(d)}}{\alpha_{k}(d)} \sum_{\substack{e \leq n / d \\(e, u)=1}} 1 .
$$

Using (7), we have

$$
\begin{align*}
\sum_{\substack{j=1 \\
(j, u)=1}}^{n} f_{k}(j) & =\sum_{\substack{d \leq n \\
(d, u)=1}} \frac{\mu(d) k^{\omega(d)}}{\alpha_{k}(d)}\left(\frac{n \phi(u)}{d u}+O(\theta(u))\right) \\
& =\frac{\phi(u)}{u} n \sum_{\substack{d \leq n \\
(d, u)=1}} \frac{\mu(d) k^{\omega(d)}}{d \alpha_{k}(d)}+O\left(\theta(u) \sum_{d \leq n} \frac{k^{\omega(d)}}{d}\right), \tag{9}
\end{align*}
$$

since $\alpha_{k}(d)>d$.

Hence, the main term of (9) is

$$
\begin{aligned}
\frac{\phi(u)}{u} n \sum_{\substack{d=1 \\
(d, u)=1}}^{\infty} \frac{\mu(d) k^{\omega(d)}}{d \alpha_{k}(d)} & =\frac{\phi(u)}{u} n \prod_{p \nmid u}\left(1-\frac{k}{p(p+k-1)}\right) \\
& =n \prod_{p}\left(1-\frac{k}{p(p+k-1)}\right) \prod_{p \mid u}\left(1-\frac{1}{p}\right)\left(1-\frac{k}{p(p+k-1)}\right)^{-1}
\end{aligned}
$$

and its O -terms are

$$
O\left(n \sum_{d>n} \frac{k^{\omega(d)}}{d^{2}}\right)=O\left(n \sum_{d>n} \frac{\tau_{k}(d)}{d^{2}}\right)=O\left(\log ^{k-1} n\right)
$$

by Lemma 3(b) and

$$
O\left(\theta(u) \sum_{d \leq n} \frac{k^{\omega(d)}}{d}\right)=O\left(\theta(u) \sum_{d \leq n} \frac{\tau_{k}(d)}{d}\right)=O\left(\theta(u) \log ^{k} n\right)
$$

from Lemma 3(a).
Substituting into (8), we get

$$
\begin{aligned}
P_{k+1}^{(u)}(n)= & A_{k} \prod_{p}\left(1-\frac{k}{p(p+k-1)}\right) f_{k}(u) \prod_{p \mid u}\left(1-\frac{1}{p}\right)\left(1-\frac{k}{p(p+k-1)}\right)^{-1} n^{k+1} \\
& +O\left(n^{k} \log ^{k-1} n\right)+O\left(\theta(u) n^{k} \log ^{k} n\right)=A_{k+1} f_{k+1}(u) n^{k+1}+O\left(\theta(u) n^{k} \log ^{k} n\right)
\end{aligned}
$$

by an easy computation, which shows that the formula is true for $k+1$ and the proof is complete.

4. APPROXIMATION OF THE CONSTANTS $\boldsymbol{A}_{\boldsymbol{k}}$

Using the arithmetic mean-geometric mean inequality we have, for every $k \geq 2$ and every prime p,

$$
\left(1-\frac{1}{p}\right)^{k-1}\left(1+\frac{k-1}{p}\right)<\frac{1}{k^{k}}\left((k-1)\left(1-\frac{1}{p}\right)+\left(1+\frac{k-1}{p}\right)\right)^{k}=1
$$

and obtain the series of positive terms,

$$
\begin{equation*}
\sum_{p} \log \left(\left(1-\frac{1}{p}\right)^{-k+1}\left(1+\frac{k-1}{p}\right)^{-1}\right)=\sum_{n=1}^{\infty} \log \left(\left(1-\frac{1}{p_{n}}\right)^{-k+1}\left(1+\frac{k-1}{p_{n}}\right)^{-1}\right)=-\log A_{k} \tag{10}
\end{equation*}
$$

where p_{n} denotes the $n^{\text {th }}$ prime.
Furthermore, the Bernoulli-inequality yields

$$
\left(1-\frac{1}{p}\right)^{k-1} \geq 1-\frac{k-1}{p}
$$

hence,

$$
\left(1-\frac{1}{p}\right)^{k-1}\left(1+\frac{k-1}{p}\right) \geq 1-\left(\frac{k-1}{p}\right)^{2}
$$

for every $k \geq 2$ and every prime p.

Therefore, the $N^{\text {th }}$-order error R_{N} of series (10) can be evaluated as follows. Taking $N>k-1$, we have $p_{N}>k-1$ and

$$
\begin{aligned}
R_{N} & =\sum_{n=N+1}^{\infty} \log \left(\left(1-\frac{1}{p_{n}}\right)^{-k+1}\left(1+\frac{k-1}{p_{n}}\right)^{-1}\right) \leq \sum_{n=N+1}^{\infty} \log \left(1-\left(\frac{k-1}{p_{n}}\right)^{2}\right)^{-1} \\
& =\sum_{n=N+1}^{\infty} \log \left(1+\frac{(k-1)^{2}}{p_{n}^{2}-(k-1)^{2}}\right)<\sum_{n=N+1}^{\infty} \frac{(k-1)^{2}}{p_{n}^{2}-(k-1)^{2}} .
\end{aligned}
$$

Now using that $p_{n}<2 n$, valid for $n \geq 5$, we have

$$
\begin{aligned}
R_{N} & <\sum_{n=N+1}^{\infty} \frac{(k-1)^{2}}{4 n^{2}-(k-1)^{2}}=\frac{k-1}{2} \sum_{n=N+1}^{\infty}\left(\frac{1}{2 n-(k-1)}-\frac{1}{2 n+(k-1)}\right) \\
& =\frac{k-1}{2}\left(\frac{1}{2 N-k+3}+\frac{1}{2 N-k+5}+\cdots+\frac{1}{2 N+k-1}\right)<\frac{(k-1)^{2}}{2(2 N-k+3)} .
\end{aligned}
$$

In order to obtain an approximation with r exact decimals, we use the condition

$$
\frac{(k-1)^{2}}{2(2 N-k+3)} \leq \frac{1}{2} \cdot 10^{-r}
$$

and have $N \geq \frac{1}{2}\left((k-1)^{2} \cdot 10^{r}+k-3\right)$. Consequently, for such an N,

$$
A_{k} \approx \prod_{n=1}^{N}\left(1-\frac{1}{p_{n}}\right)^{k-1}\left(1+\frac{k-1}{p_{n}}\right)
$$

with r exact decimals.
Choosing $r=3$ and doing the computations on a computer (I used MAPLE v), we obtain the following approximate values of the numbers A_{k} :

$$
\begin{aligned}
& A_{2}=0.607 \ldots, A_{3}=0.286 \ldots, A_{4}=0.114 \ldots, A_{5}=0.040 \ldots, \\
& A_{6}=0.013 \ldots, A_{7}=0.004 \ldots, A_{8}=0.001 \ldots
\end{aligned}
$$

Furthermore, taking into account that the factors of the infinite product giving A_{k} are less than 1 , we obtain

$$
A_{10}<\prod_{n=1}^{20}\left(1-\frac{1}{p_{n}}\right)^{9}\left(1+\frac{9}{p_{n}}\right)<10^{-4}, A_{100}<\prod_{n=1}^{100}\left(1-\frac{1}{p_{n}}\right)^{99}\left(1+\frac{99}{p_{n}}\right)<10^{-76} .
$$

REFERENCES

1. J. E. Nymann. "On the Probability that k Positive Integers Are Relatively Prime." J. Number Theory 4 (1972):469-73.
2. S. Porubský. "On the Probability that k Generalized Integers Are Relatively H-Prime." Colloq. Math. 45 (1981):91-99.
3. T. Shonhiwa. "A Generalization of the Euler and Jordan Totient Functions." The Fibonacci Quarterly 37.1 (1999):67-76.
AMS Classification Numbers: 11A25, 11N37
