A COMBINATORIAL PROOF OF A RECURSIVE RELATION OF THE MOTZKIN SEQUENCE BY LATTICE PATHS

Wen-Jin Woan

Howard University, Washington, D.C. 20059
wwoan@fac.howard.edu
We consider those lattice paths in the Cartesian plane running from $(0,0)$ that use the steps from $S=\{U=(1,1)$ (an up-step), $L=(1,0)$ (a level-step), $D=(1,-1)$ (a down-step) $\}$. Let $A(n, k)$ be the set of all lattice paths ending at the point (n, k) and let $M(n)$ be the set of lattice paths in $A(n, 0)$ that never go below the x-axis. Let $a(n, k)=|A(n, k)|$ and $m_{n}=|M(n)|$, where m_{n} is called the Motzkin number. Here, we shall give a combinatorial proof of the three-term recursion of the Motzkin sequence,

$$
(n+2) m_{n}=(2 n+1) m_{n-1}+3(n-1) m_{n-2},
$$

and also that

$$
3-\frac{6}{n+2}<\frac{m_{n}}{m_{n-1}}<3-\frac{4}{n+2}, \lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=3 .
$$

The first few Motzkin numbers are $m_{0}=1,1,2,4,9,21,51 \ldots$ Let $B(n, k)$ denote the set of lattice paths in $A(n, k)$ that do not attain their highest value (i.e., maximum second coordinate) until the last step. Note that the last step of the paths in $B(n, k)$ is U. Let $b_{n, k}=|B(n, k)|$, then some entries of the matrices $\left(a_{n, k}\right)$ and $\left(b_{n, k}\right)$ are as follows:

$$
\left[\begin{array}{cccccccccc}
{\left[\begin{array}{ccccccccc}
n / k & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3
\end{array}\right.} & 4 \\
0 & & & & 1 & 1 & 1 & 1 & & \\
1 & & & 1 & 2 & 3 & 2 & 1 & & \\
3 & & 1 & 3 & 6 & 7 & 6 & 3 & 1 & \\
4 & 1 & 4 & 10 & 16 & 19 & 16 & 10 & 4 & 1
\end{array}\right],
$$

Lemma 1: There is a combinatorial proof for the equation $m_{n}=b_{n+1,1}$. See [1] and [3] for the cut and paste technique.

Proof: Let $P \in B(n+1,1)$, remove the last step (U) and the reflection of the remaining is in $M(n)$.

For example,

$$
\begin{aligned}
P=(D L D D U D L U U L U) U \in B(12,1) & \rightarrow \text { DLDDUDLUULU } \\
& \rightarrow U L U U D U L D D L D=Q \in M(11),
\end{aligned}
$$

Theorem 2: There is a combinatorial proof for the equation $(n+1) b_{n+1,1}=a(n+1,1)$. See also [5] for the proof and [1] and [3] for the cut and paste technique.

Proof: Let $S(n+1)=\left\{P^{*}: P \in B(n+1,1), P^{*}\right.$ with one marked vertex, which is one of the first $n+1$ vertices $\}$. Then $|S(n+1)|=(n+1) b_{n+1,1}$. Let $P^{*} \in S(n+1)$; this marked vertex partitions the path $P=F B$, where F is the front section and B is the back section. Then $Q=B F \in$ $A(n+1,1)$. Note that, graphically, the attached point is the leftmost highest point (the second coordinate) of Q. The converse starts with the leftmost highest point of Q in $A(n+1,1)$ and reverse the above procedures.

For example,

Proposition 3: The total number of L steps in $M(n)$ is the same as that in $B(n+1,1)$ and is $a_{n, 1}$.
Proof: From the proof of Lemma 1, the bijection between $M(n)$ and $B(n+1,1)$ through reflection, it keeps the L steps. Hence, they have the same number of L steps.

Let $P=F L B \in B(n+1,1)$ with L step. Then $Q=B F \in A(n, 1)$. Note that the joining point is the leftmost highest point in Q, since $P \in B(n+1,1)$, by definition P reaches height 1 only at the end of the last step, the second coordinate of the L is less than or equal to 0 ; hence, any point in the subpath F from the initial point to L is lower or equal to the initial point and any point, before the terminal point, of the subpath B from L to the terminal point is of lower than the terminal point. This identification suggests the inverse mapping.

For example,

Proposition 4: There is a combinatorial proof for the equation

$$
a_{n, 0}=b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-a_{n, 1}\right)=b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-n b_{n, 1}\right) .
$$

Proof: Let $T(n)=\left\{P^{e}: P \in M(n), P^{e}\right.$ is P with an up-step marked $\}$. By Theorem 2 and Proposition 3, the number of level-steps among all paths in $M(n)$ is $a_{n, 1}=n b_{n, 1}$, and the total number of steps among all paths in $M(n)$ is $n m_{n}=n b_{n+1,1}$; hence, the total number of up-steps among all paths in $M(n)$ is $\frac{1}{2}\left(n b_{n+1,1}-n b_{n, 1}\right)=|T(n)|$. Let $P^{e}=F U B \in T(n)$ with the U step marked, then $Q=B U F \in A(n, 0)-M(n)$ and the initial point of U in Q is the rightmost lowest point in Q. The inverse mapping starts with the rightmost lowest point. Note that $|M(n)|=m_{n}=$ $b_{n+1,1}$.

For example,

Proposition 5: There is a combinatorial proof for the equation

$$
\begin{aligned}
a_{n, 0} & =a_{n-1,-1}+a_{n-1,0}+a_{n-1,1}=2 a_{n-1,1}+a_{n-1,0} \\
& =2(n-1) b_{n-1,1}+b_{n, 1}+\frac{1}{2}\left((n-1) b_{n, 1}-(n-1) b_{n-1,1}\right) .
\end{aligned}
$$

Proof: The first equality represents the partition of $A(n, 0)$ by the last step (U, L, or D), the second equality represents the symmetric property $a_{n-1,-1}=a_{n-1,1}$ and the last equality by Theorem 2 and Proposition 4.

The following example shows the trail of one element for $n=11$.

Removing the last step, the second term of the first equality and the second term of the second equality,

By Proposition 4, the second term of the third equality,

Theorem 6: There is a combinatorial proof for the equation

$$
b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-n b_{n, 1}\right)=2(n-1) b_{n-1,1}+b_{n, 1}+\left(\frac{1}{2}\left((n-1) b_{n, 1}-(n-1) b_{n-1,1}\right)\right) .
$$

Proof: The composition of the mappings in Proposition 4 and Proposition 5. The following example shows the trail of one element for $n=11$,

Removing the last step,

By Proposition 4,

The following result was proved in a combinatorial way in [2].
Theorem 7: $(n+2) m_{n}=(2 n+1) m_{n-1}+3(n-1) m_{n-2}$.
Proof: By Theorem 6,

$$
b_{n+1,1}+\frac{1}{2}\left(n b_{n+1,1}-n b_{n, 1}\right)=2(n-1) b_{n-1,1}+b_{n, 1}+\left(\frac{1}{2}\left((n-1) b_{n, 1}-(n-1) b_{n-1,1}\right)\right)
$$

By Lemma 1,

$$
m_{n}+\frac{1}{2}\left(n m_{n}-n m_{n-1}\right)=2(n-1) m_{n-2}+m_{n-1}+\left(\frac{1}{2}\left((n-2) m_{n-1}-(n-1) m_{n-2}\right)\right) .
$$

Equivalently,

$$
(n+2) m_{n}=(2 n+1) m_{n-1}+3(n-1) m_{n-2}
$$

Theorem 8: $3-\frac{6}{n+2}<\frac{m_{n}}{m_{n-1}}<3-\frac{4}{n+2}$ for $n \geq 5$ and $\lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=3$.
Proof: By Theorem 7, let

$$
\begin{aligned}
& s_{n}:=\frac{m_{n}}{m_{n-1}}=\frac{2 n+1}{n+2}+\frac{3 n-3}{n+2} \frac{m_{n-2}}{m_{n-1}}=\frac{2 n+1}{n+2}+\frac{\frac{3 n-3}{n+2}}{s_{n-1}} \\
& a_{n}:=\frac{2 n+1}{n+2}=2-\frac{3}{n+2}, \quad b_{n}:=\frac{3 n-3}{n+2}=3-\frac{9}{n+2}
\end{aligned}
$$

then

$$
s_{n}=a_{n}+\frac{b_{n}}{s_{n-1}} \text { and } \frac{b_{n}}{s_{n}-a_{n}}=s_{n-1}
$$

If $s_{n-1} \leq 3$, then $\frac{b_{n}}{s_{n}-a_{n}}=s_{n-1} \leq 3$ and

$$
s_{n}=a_{n}+\frac{b_{n}}{s_{n-1}} \geq 2-\frac{3}{n+2}+\frac{3-\frac{9}{n+2}}{3}=3-\frac{6}{n+2}
$$

$$
\begin{aligned}
s_{n+1} & =a_{n+1}+\frac{b_{n+1}}{s_{n}} \leq 2-\frac{3}{n+3}+\frac{3-\frac{9}{n+3}}{3-\frac{6}{n+2}}=2-\frac{3}{n+3}+\frac{\frac{3 n}{n+3}}{\frac{3 n}{n+2}} \\
& =2-\frac{3}{n+3}+\frac{n+2}{n+3}=3-\frac{4}{n+3}, \\
& s_{2}=\frac{2}{1}, s_{3}=\frac{4}{2}, s_{4}=\frac{9}{4}, s_{5}=\frac{21}{9}, s_{6}=\frac{51}{21}<3 .
\end{aligned}
$$

By induction on both even and odd, we have the following:

$$
3-\frac{6}{n+2}<\frac{m_{n}}{m_{n-1}<3}-\frac{4}{n+2}, \quad \lim _{n \rightarrow \infty} \frac{m_{n}}{m_{n-1}}=3 .
$$

REFERENCES

1. N. Dershowitz \& S. Zaks. "The Cycle Lemma and Some Applications." European Journal of Combinatorics 11 (1990):34-40.
2. S. Dulucq \& J.-G. Penaud. "Interpretation Bijective D'une Recurrence des Nombres de Motzkin." Colloque Lacim 2000, http://www.lacim.uqam.ca/lacim2000/programme.html.
3. E. Pergola \& R. Pinzani. "A Combinatorial Interpretation of the Area of Schroder Paths." Electronic Journal of Combinatorics 6 (1999).
4. R. A. Sulanke. "Moments of Generalized Motzkin Paths." Journal of Integer Sequences 3 (2000).
5. J. G. Wendel. "Left-Continuous Random Walk and the Lagrange Expansion." Amer. Math. Monthly 82 (1975):494-99.
AMS Classification Numbers: 05A10, 05A19, 11B65

