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1. INTRODUCTION 

The sequence of Fibonacci numbers with even subscripts (F2„) has one remarkable property. 
If we choose three successive elements of this sequence, then the product of any two of them 
Increased by 1 is a perfect square. Indeed, 

Fin ' Ffr+l + 1 = F£H-\, F^ • F^+4 + 1 = F2^+2 • 

This property was studied and generalized by several authors (see references). Let us just mention 
that Hoggatt and Bergum [8] proved that the number d = 4F2rj+iF2n+2F2ri+3 has the property that 
F2n'd + l, F2n+2-d + l, and i V n r ^ + 1 are perfect squares, and Dujella [7] proved that the posi-
tive Integer d with the above property Is unique. 

The purpose of this paper is to characterize linear binary recursive sequences which possess 
the similar property as the above property of Fibonacci numbers. 

We will consider binary recursive sequences of the form 
Gn+l = AGn-Gn_h (1) 

where A, G0, and Gt are integers. We call the sequence (Gw) nondegenerated If |G0| + |Gi| > 0 
and the quotient of the roots a, fi e C of the characteristic equation of G„, 

x2-Ax + l = 0, 

Is not a root of unity. Let D = A2 - 4, C = G?- AGQGi + G§. Then nondegeneracy Implies that 
| A | > 3 and C * 0. Solving recurrence (1), we obtain 

U"~ a-ft ? 

where a = Gt-GJ3, b = G\-GQa. 

Definition 1: Let k be an Integer. A sequence (G„) Is said to have the property P(k) If both 
GnGn+i + k and GnGn+2 + k are perfect squares for all n > 0. 

With this notation, we may say that the sequence (F2n) has the property P(l). 

Our main result is the following theorem. 

Theorem 1: Let (G„) be a nondegenerated binary recursive sequence given by (1). If Gn has the 
property P(k) for some i G Z , then A = 3 and k = GQ-3GQGt + Gf. 
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Remark 1: The sequences from Theorem 1 have the form 

Gn = ^l^n " ^ O ^ n - 2 ? 

and for G0 = 0 and Gt - 1 we obtain exactly the sequence (F2n). Note that the converse of Theo-
rem 1 is also valid. This follows from the formula (F2„) proved below, and the general fact that if 
ab + k = r2 then a(a + b~2r) + k = (a-r)2. 

2. PROOF OF THEOREM 1 

Assume that k is an integer such that the sequence (Gn) has the property P(k). This implies 
that GnGn+2 + k is a perfect square for all n > 0. On the other hand, 

2^2«+2 _,_ &2 /?2w+2 _ „-U(„pt\n(„2 _L l&\ r r - ®2a2n+2+h2f32n+2-ah(a@y(a2 + p2) 
(a-pf 

aa"+l - bpn+1 V ab(ap)n(a - pf 
a-p J {a-pf 

G2„+l-ab = Gl1-C. 

Hence, G2
+l - C + k is a perfect square for all n > 0. This implies that k = C. 

Our problem is now reduced to find sequences such that GnGn+l + C is a perfect square for all 
n> 0. 

We have G2
+l- AGnGn+l + G2 = C (see [9]). Denote GnGn+l + C = G2~(A-l)GnGn+l + G2

+l 

by Hn. It can be verified easily that the sequence (Hn) satisfies the recurrence relation 

//n+1 = ( ^ 2 - 2 ) / f n - / / „ _ 1 - C ( ^ 2 - ^ - 4 ) . 

Finally, put Sn = (A2 -4)Hn -C(A2 - A-4). Then the sequence (Sn) satisfies the homogeneous 
recurrence relation 

Denote the polynomial (A2 - 4)x2 - C(A2 - A - 4) by R(x). Then our condition implies that, for 
every n > 0, there exist x E Z such that 

Sn = R(x). (2) 

Therefore, equation (2) has infinitely many solutions. 
Let Dl = (A2-2)2-4 = A2(A2-4) and Cx = ^2-S0S2 = -(A2-4)A2C2 be the discriminant 

and the characteristic of the sequence (Sn), respectively. Assume also that 

e axa2n-b^2n . , . 
K = ——5—T3F— f°r s o m e ai &nd ft, 

and put 
Tn=ala2n+b1fi2» forallw^O. 

Then, since 

3?=Z}Sj + 4Q forall?i>0, 
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and since the equation Sn = R(x) has infinitely many integer solutions (w, x)? it follows that the 
equation 

y2=DlR(xf+4Cl 

has infinitely many integer solutions (x, y). By a well-known theorem of Siegel [20], we get that 
the polynomial F{X) = DlR(X)2+4Cl has at most two simple roots. Since F is of degree 43 it 
follows that F must have a double root. Notice that 

F\X) = 2DlR{X)R\X) = 4(A2 ~4)DlR(X)X. 

Certainly, F and R cannot have a common root because this would imply that Q = 0, which is 
impossible since (Gn) is nondegenerated. Hence, F(0) = 0, which is equivalent to 

A2(A2 - 4)[C(A2 -A- 4)]2 - 4A2(A2 - 4)C2 = 0. (3) 

Formula (3) implies that A2 - A - 4 = ±2. 

A2-A-4 = ±2. 

lfI2-A-4 = 2, then A = 3 or A = - 2 , and if A2 - A-4 = - 2 , then A = 2 or A= - 1 . Since 
we assumed that the sequence (Gw) is nondegenerated, i.e., \A\ > 3, we conclude that A = 3. D 

Remark 2: In degenerate cases with 4̂ = 0, ±1, ±2, the sequence (GJ also may have property 
P(k) for some k e Z. For example, for 4̂ = 2, the sequence Ĝ  = a has property P(62 - a 2 ) ; for 
A = 0, the sequence G2lf = 0, G4n+l = 2a6, G4w+3 = ~2a6 has property P((a2 + h2)2); for 4 = - 1 , 
the sequence G3n =a, G3n+l =b, G3n+2 = -a-b has property P(a2 -hab + h2). Here, a and b are 
arbitrary integers. 
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