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1. INTRODUCTION 

Bicknell and Hoggatt [l]-[6] , [9] published several articles in the 1970s involving matrices 
made up of generalized arithmetic progressions and convolutions of sequences with first term one. 
We give a new proof of their result using a novel decomposition of such matrices and then extend 
their result to convolution matrices of sequences whose first term does not equal one. In the 
process, we gain an increased understanding of the underlying structures of such matrices. We 
also note that these results should be readily extensible to a class of matrices recently discussed by 
Ollerton and Shannon [11]. 

2. AMTHMETIC PROGRESSION MATRICES 

In [5] and others, Bicknell and Hoggatt define an arithmetic progression of r* order, or 
(AP)r9 as any sequence of numbers whose r* row of differences is a nonzero constant while the 
(r - l)st is not. The constant number In the r* row is called the constant of the progression. The 
sequence Itself is the zeroth row of differences, so a constant nonzero sequence is an (AP)0. 
They then give the following theorem. 

Theorem 1 ("Eves' Theorem"): Let A be an n x n matrix whose Ith row (/ = 1,2,..., n) Is com-
posed of n terms of an {AP)i_l with constant of progression at. Then \A\ must be equal to 

Bicknell and Hoggatt refer to this as Eves1 Theorem after a letter they received from Howard 
Eves; however, very similar results may be found much earlier In Mulr and Metzler (see [10], pp. 
47-48 and Ch. XX). The first example of such a matrix given In both of these sources Is the 
familiar rectangular form of Pascal's triangle, 

r= 

(l 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 

1 
3 
6 
10 
15 
21 

1 
4 
10 
20 
35 
56 

1 
5 
15 
35 
70 
126 

1 
6 ••• 
21 ••• 
56 ••• 
126 ••• 
252 ••• 

(1) 

whose Ith row (i = l, 2,...) is an (AP)^ with constant 1. According to the theorem, then, the 
determinant of any n x n submatrix of T with one side on the left column of ones (or, by sym-
metry, Its top row along the top row of ones) must equal njLi ^ = XIJLi *" * • 

An alternate approach Involves the observation that 
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T = 

(I 
1 
jl 
1 
1 
1 

0 
1 
2 
3 
4 
5 

0 
0 
1 
3 
6 
10 

0 
0 
0 
1 
4 
10 

0 
0 
0 
0 
1 
5 

0 -^ 
0 ••• 
0 ••• 
0 ••• 
0 ••• 
1 ••• 

• 

(I 
0 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 

1 
2 
1 
0 
0 
0 

1 
3 
3 
1 
0 
0 

1 
4 
6 
4 
1 
0 

1 ••• 
5 ••• 
10 ••• 
10 ••• 
5 ••• 
1 ••• 

(2) 

that is, Pascal's triangle in rectangular form is equal to the matrix product of its lower triangular 
form with its upper triangular form. 

From this decomposition, it is easy to see why the upper left corner determinants discussed 
above must equal one. Furthermore, it begs the question: can other arithmetic matrices be decom-
posed in a similar way? 

The answer is yes. In fact, any matrix A whose rows are arithmetic progressions satisfying 
the criteria of Eves1 theorem may be decomposed similarly. We state this formally as 

Theorem 2 (Pascal Decomposition Theorem): Let any n x n matrix whose Ith row is an (AP)^ 
for i = 1,2,..., n be known as an arithmetic matrix. Then A is an arithmetic matrix if and only if it 
may be rewritten as the product of an n x n lower triangular seed matrix S with nonzero diagonal 
elements and the upper triangular matrix form of Pascal's triangle. 

Proof: We will first present a constructive proof that such a matrix decomposes and then 
deal with the reverse case. Let 

A = 

f l \ 

v4?y 

(3) 

where 4 is the Ith row of A, that is, Ai=(aihai2,...,ain)ri and let Af be an (AP)^ as defined 
above. We write out the difference table of this Ith row as in Sloane and Plouffe (see [12], p. 13), 
labeling the leading diagonal {bil9hi2,...}: 

AL 
A4 
A24 

N-lAf 

ba = aa a •a a to a V4 a He 

(4) 

where A^4 denotes the k^ row of A/s differences; that is, the j * element of A4 is Aâ - = 
aiU+i)" aij anc^ ^n §er ieral ^ 7* element of A^4 is A^. = Ak~laj(j+l) - £t~lQtj. 

Now, since At is an (AP)t_l9 its ( i - l )* row of differences must be equal to the nonzero 
constant of the progression. In particular, bu must equal the constant of the progression. Also, 
any elements below row i (on the leading diagonal, all bij9 j > i) must equal zero. From [12], we 
have the following relationships between the top row of our difference table and its leading 
diagonal: 
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- 1 0 - 0 h, and bn ^}:!W (5) 

Substituting for the aik that make up our matrix A, we have 

A = 
ar 
A2\ 

\an\ 

a 12 

^22 

a • r t l 

"in 
J2n 

AnnJ 

1,0-0 
lfa 

'V ' 2 / 

& A X ••• §("->-' 

(6) 

Now, since some of the iw were shown to be zero above, we can reindex the sums and see that 
f 

fbu 0 
"21 

*31 

\b
nl 

"22 
&32 

"n2 

0 
0 

*33 

4 

o ^ 
o 
o 

KnJ 

1 1 

o i 

0 0 1 

0 0 0 

0 0 0 

(V) 
M - l 

« - l 

n-l 
n-2 

(7) 

Therefore, A can be written as the product of a lower triangular matrix S and the n x n upper tri-
angular Pascal matrix. Moreover, it is easy to see that bu * 0 for (i = 1,2,..., n) by the definition 
oftU(AP)t. 

As for the reverse case, we notice that so long as the diagonal elements ofS are nonzero, the 
process outlined above can be run backwards. Hence, any matrix that is the product of a lower 
triangular seed matrix S with nonzero diagonal elements and the upper triangular matrix form of 
the Pascal triangle must be an (AP) matrix, and our theorem is proved. What's more, we now 
know the exact structure of the seed matrix S, and can calculate it from our original matrix A. We 
call this process the Pascal decomposition of A. 

Corollary: I ^ F d V 
As an example, we can apply our theorem to the numbers Mk^r examined by Wong and 

Maddocks in [13]. These numbers, with properties somewhat similar to binomial coefficients, 
satisfy the recurrence relation 

(8) Mk+l r+l = M * H r + Mk, r+1 + M* k,r 

with initial conditions M 0 0 = M1 0 = M0jl = 1. If we write these numbers out in a matrix where k 
is the row number and r indicates the column, we have the following arithmetic matrix: 
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M: 

fl 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 
11 

1 
5 
13 
25 
41 
61 

1 
7 
25 
63 
129 
231 

1 
9 
41 
129 
321 
681 

1 
11 ••• 
61 ••• 

231 ••• 
681 ••• 
1683 ••• 

(9) 

To decompose M, we multiply it by the inverse of the upper triangular Pascal matrix. Equiva-
lently, we could write out the difference tables for each row of M, but the inversion method is 
more succinct: 

(\ 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 1 1 
5 7 9 
13 25 41 

1 
11 
61 

25 63 129 231 
41 129 321 681 

1 11 61 231 681 1683 

v 

' 1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 
0 0 0 0 
0 0 0 0 0 

1 
5 
10 
10 
5 
1 

J v 
0 (\ 0 0 0 0 0 

1 2 0 0 0 0 
1 4 4 0 0 0 
1 6 12 8 0 0 
1 8 24 32 16 0 
1 10 40 80 80 32 

V , : : : : : 
which may be rewritten as 

M = 

V i 

fl 0 
1 2 
1 4 
1 6 
1 8 
1 10 

v • 

0 
0 
4 
12 
24 
40 

0 
0 
0 
8 

32 
80 

0 
0 
0 
0 
16 
80 

0 -) 
o ... 
0 ••• 
0 ••• 
0 ••• 

32 ••• 

• 

fl 1 1 1 1 1 •••' 
0 1 2 3 4 5 ••• 
0 0 1 3 6 10 ••• 
0 0 0 1 4 10 — 
0 0 0 0 1 5 ••• 
0 0 0 0 0 1 ••• 

v 

(10) 

(11) 

From equation (11), it is easy to see that \M\nxn = 2n{n"l)l2, as predicted by Eves' theorem Oust 
note that each row i (i = 1,..., n) has constant 21"1]. 

Interestingly, symmetric matrices such as M are subject to further decomposition using the 
lower triangular matrix form of Pascal's triangle; note that 

M--

fl 0 0 
1 1 0 
1 2 1 
1 3 3 
1 4 6 
1 5 10 

v: : : 

0 
0 
0 
1 
4 
10 

0 0 —') 
0 0 ••• 
0 0 ••• 
0 0 ••• 
1 0 -
5 1 ••• 
: : •.) 

• 

fl 0 0 0 0 
0 2 0 0 0 
0 0 4 0 0 
0 0 0 8 0 
0 0 0 0 16 
0 0 0 0 0 

v : : : : : 

0 •••" 
0 ••• 
0 ••• 
0 ••• 
0 ••• 

32 ••• 

\ 

• 

/ 

f l 1 1 1 1 1 • 
0 1 2 3 4 5 • 
0 0 1 3 6 10 • 
0 0 0 1 4 10 • 
0 0 0 0 1 5 • 
0 0 0 0 0 1 • 

V- : • : • • 

(12) 

This result is valid for symmetric arithmetic matrices in general, so we present another corollary. 
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Corollary: Let A be any symmetric matrix that also satisfies the conditions of Theorem 2. Then 
A- PT' -D-P, whereP is the upper triangular Pascal triangle matrix and D is diag{cx,c2,...,cn) 
with cf being the constant of the progression for the Ith row of A (i = 1,2,..., /i). 

Proof: By Theorem 2, A = SX-P and AT = PT -S2, where 5i and $2 are lower triangular and 
upper triangular matrices, respectively. Since A is symmetric and P is invertible, we can write 
A = PT -LX'P and AT = PT -L2-P, where Lx is lower triangular and 1^ is upper triangular. Since 
A = AT by symmetry, PT >LX'P = PT>L2°P. Thus, Lx- L2, and since Lx is lower triangular and 
L^ is upper triangular, they must be a diagonal matrix, denoted by diag{lh /2, ...,/„). Now, the 
diagonal elements of P and P r are all one, and by the first corollary to Theorem 2 the deter-
minant of the principal (k x k) submatrix of A is equal to the product of the progression constants 
of its rows, cfo. ..Cu. This means that cfa *.,ck~lj2..Jk for k = 1,2,...,n. Therefore, by induc-
tion on fc, the diagonal elements of D = Lx = L2 must equal the progression constants for A'§ 
rows. 

3. CONVOLUTION MATRICES FOR SEQUENCES WITH FIRST TERM ONE 

The convolution matrices Bicknell and Hoggatt studied next provide further interesting 
examples of the decomposition technique, and they also lead to an interesting generalization. The 
convolution of two sequences {an} and {bj (n = 0,1,...) is defined to be the sequence {cj such 
that cn = T!k=Q^kK-k- ^ e convolution matrix of a sequence is the matrix whose Ith column is the 
( i - l ) * convolution of the sequence with itself (/ = 1,2,...). The rectangular form of Pascal's 
triangle, for instance, is the convolution matrix for the sequence {1,1,1,...}. Bicknell and Hoggatt 
did a detailed analysis of the convolutions of the Catalan numbers 

^^{^ift")}^1'1 ' 2 ' 5 ' 1 4 ' -^ 
over the course of several papers; in [2] and [3], they present the following convolution matrix for 
this sequence: 

C = 

(\ 
1 
2 
5 
14 
42 

1 
2 
5 
14 
42 
132 

1 
3 
9 

28 
90 

297 

1 
4 
14 
48 
165 
572 

1 
5 

20 
75 

275 
1001 

1 
6 ••• 

27 ••• 
110 ••• 
429 ••• 
1638 ••• 

(13) 

Bicknell and Hoggatt showed in [3] that any convolution matrix for a sequence whose first 
term is one must be an arithmetic progression matrix with row constants all equal to one and, 
hence, must—by Eves8 theorem—have determinant one. Nevertheless, examining the Pascal 
decompositions for these matrices is worthwhile since it reveals a detailed underlying structure 
not otherwise apparent. 

Looking at the Pascal decomposition of C, we note that the seed matrix S seems to have a 
close relationship to the even columns of C: 
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C-

(1 
1 
2 
5 

14 
42 

0 
1 
3 
9 

28 
90 

0 
0 
1 
5 

20 
75 

0 0 0 •••"] 
0 0 0 — 
0 0 0 -
1 0 0 -
7 1 0 -
35 9 1 ••• 

• 

(1 1 1 1 1 1 •••" 
0 1 2 3 4 5 ••• 
0 0 1 3 6 10 ••• 
0 0 0 1 4 10 ••• 
0 0 0 0 1 5 ••• 
0 0 0 0 0 1 ••• 

1 

(14) 

What can account for this? To tease out the answer, we first examine convolution matrices in 
general. First, we note that any nxn convolution matrix V of a sequence {vn} may be written in 
the form 

V = (V, A-V, A2°V,...,An-l-VX (15) 

where V is the first n terms of {vj and 

A = 

fv0 
vl 
v? 

v V i 

0 
vo 
v> 

Vn-2 

0 •• 
0 •• 

vp :* 

V 3 -

0) 
0 
0 

voJ 
(16) 

If we set v0 = 1, then from [3] we know that J7 is a matrix satisfying Theorem 2 and must? there-
fore, have a Pascal decomposition, i.e., V = S°P, where S is a lower triangular seed and P repre-
sents the upper triangular Pascal matrix. We can solve this for S = V°P~l; substituting for V 
gives 

S = (F, A-V, A2-V,„ 

Since the inverse of P is clearly 
A"~l -V)- Pr- ill) 

3-1™ 

(1 
0 
0 
0 
0 
0 

- 1 
1 
0 
0 
0 
0 

1 
- 2 
1 
0 
0 
0 

- 1 
3 

- 3 
1 
0 
0 

1 
- 4 
6 

- 4 
1 
0 

- 1 • 
5 • 

- 10 • 
10 • 
- 5 • 
1 • 

(18) 

we can rewrite S: 

S = (V, (A-I)-V, (A-I)2-V,...,(A-I)"-1-V), 
where / is the identity matrix. 

Thus, each column of S is a successive convolution of {v0, v1;...,v„) with {0,vh v2,. 
i.e., if 

f 0 

B = (A-I) = 

Vv»-i 

0 
0 

V2 

0 
0 
0 

0 
0 

then 

S = (V, BV, B2V,...,B"-1-V). 
We summarize this discussion in the following theorem. 

(19) 

(20) 

(21) 
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Theorem 3 (Weak Convolution Decomposition Theorem): If V is a convolution matrix of a 
sequence {vj with first term one, then V = S- P for some lower triangular matrix S and the upper 
triangular Pascal triangle matrix P. Moreover, successive columns of S are successive convolu-
tions of the sequence {vn} with the sequence {0, vl9 v2, v3 , . . .} . 

Returning to our Catalan convolution matrix example, we can reexamine its seed matrix in 
light of this theorem. As predicted, each column is a convolution of the sequences {1,1,2,5,...} 
and {0,1,2,5,...}. Besides this, we can make our earlier conjecture about the relationship 
between the columns of the Catalan seed matrix, denoted by Sc, and the even columns of C 
explicit: the Ith column of Sc is equal to the (21')* column of C shifted down / places (/' = 0, 1, ...). 

Symbolically, we let C = (C, A-U, A2 • C,..., An~l•C), where C is the column vector filled 
with the first n Catalan numbers and 

Co 
Q 
Q 

0 
Co 
Q 

0 
0 

Co 

V.C„_i C„_2 C„_3 

Also, let Sc = (C, B • U, B2 • C,..., Bn~l • C), where 

0> 
0 
0 

G 

(22) 

oj 

B = 

0 

C2 

0 
0 

0 
0 
0 

\(-„-l (s„-2 

- 0\ 
... o 
... o 
c 6 

(23) 

Then what we are trying to show is that Bk C is equal to A2k • C shifted down k spots. 
We first note that the Catalan numbers have the well-known recursive relation Zy=0 Q-jCj = 

q+ 1for/ = 0 , l , . . . (See [8].) 
By this relation, we have 

and 

h-A2 = 

fa 
C2 

C3 

V^n 

f o 
c. 

2 

0 0 
0 

C„-l C„_2 

c, 
V^n-i 

0 
0 

C„-2 

0 
0 
0 

where 
(0 0 0 

1 0 0 
0 1 0 
6 6 ••'• 

0^ 
0 
0 

4 
- 0~\ 
... o 
... o 
c,' o 

0̂ 1 
0 
0 

(24) 

••B, (25) 

1 0 

(26) 
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Since Is- A2 = B, we can show by mathematical induction that 

= (r,(/s^2)-r,(/2^4)-r,...,(/r1^^1))C), 
thereby showing the desired relationship between the columns of Sc and the even columns, of C. 

4. CONVOLUTION MATRICES OF SEQUENCES WITH 
FIRST TERM OTHER THAN ONE 

We now have a very detailed understanding of the structure of any convolution matrix of a 
sequence whose first term is one. What happens, though, if the sequence's first term does not 
equal one? A good example is the following convolution matrix of the Lucas numbers {2, 1, 3, 4, 
7, ...} (we use the standard definition and notation, but begin with LQ = 2 instead of Lx = 1): 

(28) 

Eves' theorem has nothing to say in this case since the rows are no longer arithmetic progressions. 
However, if we multiply it twice by the inverse of the upper triangular Pascal triangle matrix, 
which we will again denote P, we obtain a seed matrix very like the ones encountered in our 
earlier work: 

(2 
1 
3 
4 
7 
11 

4 
4 
13 
22 
45 
82 

8 
12 
42 
85 
195 
399 

16 
32 
120 
280 
705 
1588 

32 
80 
320 
840 
2290 
5601 

64 • 
192 • 
816 • 
2368 • 
6924 • 
10204 • 

L-(P-1f = 

2 
1 
3 
4 
7 
11 

0 
2 
7 
14 
31 
60 

0 
0 
2 
13 
43 
115 

0 
0 
0 
2 
19 
90 

0 
0 
0 
0 
2 
25 

0 • 
0 • 
0 • 
0 • 
0 • 
2 • 

(29) 

In particular, each column of this matrix is equal to the convolution of the sequences {2, 1, 3, 4, 
...} and {0,1,3,4,. . .}. 

Note that this sequence had first term two, and that we multiplied the matrix by P l twice. 
This was by no means coincidental; in fact, we may state this correlation as part of a general 
theorem. 

Theorem 4 (Strong Convolution Decomposition Theorem): Let {vn} be a sequence whose first 
term is a positive integer v0, and let Fbe the convolution matrix of that sequence. Then V = 
S-Pv° for some lower triangular matrix S and the upper triangular Pascal triangle matrix P. 
Moreover, successive columns of S are successive convolutions of the sequence {vn} with the 
sequence {0, vh v2, v3,...}. 

Proof: The proof is constructive. We first note that if V is any convolution matrix of a 
sequence {vn} with first term v0, then V = (V, A-V, A2• V,..., An~l•V), where V is the column 
vector whose Ith element is vi and 
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A = 

vo 
vl 
V2 
V3 
v4 
v5 

0 
v0 
vi 
v2 
V3 
v4 

0 
0 

vo 
vi 
V2 
V3 

0 
0 
0 
vo 
Vl 
V2 

0 
0 
0 
0 
v0 
*I 

0 •• 
0 •• 

0 •• 
0 •• 
0 •• 
vo •• 

(30) 

v / 
If we multiply the convolution matrix v0 times by the inverse of the upper triangular Pascal tri-
angle matrix P, we have 

s=v-(p-l)v° 
= {V, A-V, A1-V,...,AH-l-V)-(P-iy* 
= (V, (A-I)-V,(A-I)2-V,...,(A-1)"'1 • V)• (P-1)^-1 

= (V,(A- 21) -V,(A- 21 f •¥,..., (A- 2/)""1 • V) • ( P " 1 ) ^ 
(31) 

= (V, (A-v0iyV, (A-v0lf.V,...,(A-v0ir1-V). 
Let a new matrix B = A - vQI, i.e., 

0 

B = 

0 
0 
Vl 
v2 
v3 
v4 

0 
0 
0 
vi 
V2 
v3 

0 
0 
0 
0 
vi 
v? 

0 
0 
0 
0 
0 
v; 

0 ••• 
0 ••• 
0 ••• 
0 ••• 
0 ••• 
0 ••• 

(32) 

Then it is clear that S is a convolution matrix since S = (V, B-V, B2 • V,..., Bn~l • V). More spe-
cifically, successive columns ofS are successive convolutions of the sequence {v0, vl9 v2,...} with 
{0, vl9 v2,...}, as was to be shown. 

Corollary: For any convolution matrix V satisfying the conditions of Theorem 4, \V\ = vj v^""1^2. 

Proof: By Theorem 4, F = ̂ -Pv°. Now, | P ^ | = 1V» =1, so \V\ = \S\. Since S is lower 
triangular with diagonal elements v0, v0vf, VQV?, ..., v0rf~l, \S\ = vJv1

1+2+'"+(,,"1). Hence, |F | = |5 | = 

Remark: The determinant of any convolution matrix is wholly determined by the first two 
elements of the sequence. 

5. CONCLUSION AND FUTURE GOALS 

Pascal decompositions allow easy calculation of determinants for arbitrary sized matrices, for 
once the sequence on the diagonal of the seed matrix is understood, it is a simple matter to 
calculate its product. What's more, this technique provides a visual tool to examine the structure 
of several flavors of matrices, such as the arithmetic and convolution matrices discussed above. 
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In a future paper, we hope to further generalize this technique and add to this list the recursion 
relation matrices studied by Ollerton and Shannon [11]. 
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