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In this paper we discuss the divisibility theory of the generalized Lucas sequences U, and V,
which were defined by D. H. Lehmer [1] as follows:

U,=(@"-p"/(a-P), 6]

Vo=a"+p" V=2, @

where o = (R ++A)/2, B=(JR-+A)/2 are the roots of x*~R"%x+(Q=0, R and Q are
coprime integers, R > 0, the discriminant A = R—40, and n >0 is an integer.

The main theorem of this paper is a complement of that of Lehmer [1], and this result is
essential in the applications to exponential Diophantine equations, as we will show in another
paper. Moreover, the main results of McDaniel [2] will be extended, and this can be deduced
easily from the main theorem of this paper.

It is easy to see that U, and V,, are rational integers and that U,, and V,,,, are integral
multiples of RV2. Let Z be the set of integers, RY?Z = {aR"?|a € Z}. If we define the divisibility
of the elements of the set Z U RV2Z as follows: Forany 4, Be ZURY?Z  A|B< B=A-C, and
C €ZURYZ, then most of the propositions below are well known (see, e.g., [3], Chapter 2).
Proposition 1(e) was recently proved in [2]; however, as we will show, this proposition is not true
for the most general definition of the generalized Lucas sequences as defined above.

Proposition 1: Let m and n be arbitrary integers:

(@ V2-AUZ=4Q".

() If min,thenU,,|U,; if n/m is odd, then V,,|V,.

© Uy, =UJ,;Vyy=V2-20".

(d) If d = gcd(m, n), then ged(U,,,U,) =Uj,.

(e) If d = gcd(m, n), then ged(V,,,V,) =V, if m/d and n/d are odd, and 1, or 2, otherwise.

(/) Ifpis a prime and @ is the minimal positive integer with p|U, ([1] defined @ to be the
appearance of p in U,,), then for any positive integers k£ and 1, we have pi |Ukwp-

(g) If an odd prime p, with p|RA, £ = (AR/p) is the Kronecker symbol, then U, =0 (mod p).

For any prime p, 4 eZURY?Z, ord,4 is defined to be the rational number s with 2s being
an integer and p*’|| 42, denoted by ord,4 = s.We now have the following theorem.

Theorem 1: If p, q are odd primes and s, # are positive integers with p*||A, g’[| R, then:

(a) If p° >3, then ord, U, = ord,m, ord,V,, =0.

(b) For g’ >3: if m is odd, then ord,U,, =0, ord,V,, /V} = ord m; if m is even, then ord.}V,, =0,
ord,U, =ordm+1/2.
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(c) Suppose p’=3 and A is an integer with 3*||3R+ A, then ordy¥}, = 0, ord;Us,, = A +ordym; if
3}m, then ord;U,, =0.

(d) Suppose now that ¢' =3 and g is an integer with 3#||[3A+R. If m is odd, then ord;U,, =0,
ordsls,, /V, = ordym+ u, and ordy,, /¥, =0 with 3)m; if m is even, then ord}, =0, ord;Us, =
ordyn+ p+1/2, and ordsU,, =1/2 with 3)m.

(e) Let 2|R: if 2)/m, then ord,U,, = ordV,, /V; =0 (2[m); if 2|lm, then ordy,, = ord}V, and
ord,U,, = 1/2; if 4|m, then ord,V,, =1/2 and ord,U,, = ord,m—1/2.

(H Let 4|R: if m is odd, then ord,U,, =0 and ord},, = ord,J}; if m is even, then ord,U,, =
ord,m+3ord,R—1 and ord¥, =1.

Proof: We divide the proof of the theorem into three parts:
() If m is odd, subtracting the m® power of 28 = R"? — AV? from the m™ power of 2a =
RV2 + A2 we get

1 nR/2 m i 2i-1)/2 1/2 D2 m—1Y . 2i-1)/2
20, = 2 (2i+1)NR(W TV =mRO 4 3 ﬁ( 2i )A'R(m_ L 3)
i=1

i=0
Let u be a positive integer with p*|lm, u> 0, and notice that

A =si+u-ord,(2i+1) 2 si+u—log (2 +1). G

m
o, o1
If p* # 3, then p” >2i+1 for any i > 1, so from (4) we know that every term of the summation of
(3) is a multiple of p**'; therefore, ord U, =ord m=u. This result together with Proposition
1(2) and (R, 0) =1 implies that ord }, =0, i.e., Theorem 1(a) holds for odd m.

If p* =3, then 4U, = 3R+ A, so from (3) we conclude that 3|U,, when 3|m. Subtracting the
m® power of 2% =V; — AV2U, from the m™ power of 2a° =V, + AV2U,, we get

(m=1)/2 ' '
2", Uy = Y, (Zi’ﬁl)(AUg)% ~2i-1, (5)
i=0

i=

Similar to the above, we have ord,U;,, /U, = ordyn and ord,},, =0, i.e., Theorem 1(c) holds for
odd m.

If m is odd, from [1] and Proposition 1(a) we have

(m-1)/2
m— m i A(m=2i—
2 le/I/l: g (21+1)RA( 2 1)/2’ (6)
R, IV}t~ AU? = 40", %)

Symmetrically, from (6) and (7) we conclude that Theorem 1(b) and (d) hold for odd m.

(I) Now suppose that m is even, then U7 = R, so R|U?, for any even m; therefore, ord , =
0=ord}, by Proposition 1(a). Let m=2%m, 2 |m,, a=1, be an integer, and notice that by
Proposition 1(c) we have
U. - UnVoVam "'Vza-‘m,' ®) .

2
Thus, ord U, = ord U,, and ord U,, =ord},, , and from the above result of the odd number m

we know that Theorem 1(a)-(d) hold for even m.
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(L) For Theorem 1(e), it is well-known that {U,,} satisfies the following recurrence relation,
Upiy =R"U,,.1—0QU,, Uy,=0, U, =1. ©)
Since (R, Q) =1 and 2||R, we have 0 =1 (mod 2) and A= R-4Q =2 (mod 4). Taking modulo
2 for the sequence (9), we obtain a sequence with a period 4,
U,=0,1,R"2 10,1 RV 1, ... 10

If 2/m, then (10) implies that ord,U, =0, and from 2||A and V> - AU? =40Q™ we have
ord,V,, =1/2; if 4|m, then (10) implies that ord,U,, > 1, and from 2||A and V2 — AU? = 40™ we
have ord,V,, =1. Then from (8) we have

a-1
_ _ 1 _ 1
ord, U, = ord,U, +ordyV,, + ; °rd2Vz'm, =0 +5+ (a-1)=ordm— X
If 2||m, say, m=2m,, 2|m,, then V, = R—2Q =0 (mod 4), and adding the m" powers of
202 =V, +(RA)Y? and 282 =V, — (RA)?, we get
-2
(m-D ( m,

m—1 —
20 Vom 1V2 = % 2i+1

)szi ( AR)(m, —2i-1)/2 (11)
and ord, (V2 (AR)™~%-D/'2) > m —1, and the equality holds if and only if i =0. Thus, by taking
modulo 2™ for (11), we get ord},, /¥, =0, and from (8) we have ord,),, =ord}, =1/2.
Summing the above result we complete the proof of Theorem 1(e).

For Theorem 1(f), if 4|R, put R=4R,, then A= R—4Q =4A, and Q is odd, so 2|RA,, and
if m is odd,

CR2C m i pmezienyz vz, AP _m(m=1) y pomi-tyz . Am-1/2

— U m—2i— _ m= Y ML= o

Un= 2. R e Ol ) L e
P

i=1
Therefore, ord,U/,, =0. Similarly, ord,V,, = ord,};. If m is even, then from (8) we have 2|U,,,
and V2 /4 - AU% = Q™ implies that V,,/ 2 is odd, i.e., ord,V,, = 1. From the results for odd m and
again using (8) we have ord,U,, = ord,m—1+ord}; = ordym++ord,R—1. This completes the
proof of Theorem 1.
Remark 1: Put a,=a”, p,= ", Ri=o,+ B, A =(a,- B UL =(af - B/ (e, - By), and
VO = g+ B2 Then we have UV =U,,, /U, V& =V, and A, = AU%. Applying Theorem 1
to UD, VD, we obtain the largest power of ¢ in U, or V, if ¢|U,, or q|V,,.

Now let us remark that if 2/ R then 2] A, since U, and V, satisfy recurrence relation (9) and
the following one, respectively,

V;1+2 = RVZV»H—I - QVm’ I/E) = 2’ Vi = R1/2 . (12)

Taking modulo 2, we have 2|U,V, when m>0, and if 2/Q then 2|U,, and 2|V,, if and only if
3|m and 3|n, respectively. Hence, from Remark 1 and the above discussion, we need only con-
sider the case of 2| R when we study the behavior of the 2-part of U,, and V.

We will now prove the following corollary which is an extension of Proposition 1(e) above.
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Corollary: 1If d = gcd(m, n), then gcd(V,,,V,) =V, if m/d and n/d are odd, and 1, N2, or2,
otherwise.

Proof: For d = gcd(m, n), we may suppose without loss of generality that im=d + /n, where
kand £ are positive integers. Ifk is odd, notice that V|V, and (U,,,V,,)|2 for any m 20 and

Wi = (@7 = BN = B AV o 13)
and V,|V,, if £ is odd, V,|U,, if £ is even. Thus,
Vs VN (@ = BN = B, ViV, |87 (14
If k is even, then /n is an odd multiple of d, and we see that
2@ - g [ (@ - B =V (" - ") [ (@ = ) +V,,, (15)
lez(akm _ﬂkm)/(ad _ﬂd)’ and I/;lVlm 50
Vs V|2V, (16)

Furthermore, for any prime divisor p of 2V, from Remark 1, applying Theorem 1 to V,, and V,, we
obtain the desired results.

Remark 2: Lehmer proved the following theorem.

Theorem A (Lehmer [1], Theorem 1.6): If 2« is a positive integer such that g” is the highest
power of a prime q dividing U,,, and if k is any integer not divisible by ¢, then for any integer A,

U i is divisible by ¢®**, and if g* # 2, this is the highest power of ¢ dividing U g

Comparing Theorem A with Theorem 1 of this paper, we can easily find out that: If g% =3,
m=2, 3|R, and 9|3A+ R, and we put A =1 in Theorem A, then the last conclusion of Theorem
A is incorrect. This is indispensable in its applications to exponential Diophantine equations, as
will be shown in a future paper.

Example: Let R=2 and A =-1, then we have
Vo=2, V=2, Vy=4, V;=5J2, V,=14, V; =192, ...,
which means that gcd(V,,V5) = /2.
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