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In this paper we discuss the divisibility theory of the generalized Lucas sequences Un and Vn 
which were defined by D. H. Lehmer [1] as follows: 

Un = (a"-fi")'(<*-P), (1) 
F„ = a" + £", V0 = 25 (2) 

where a = (jR^jA)/2, fi = (jR~~jA)/2 are the roots of x2~Rl/2x-hQ = 0, R and Q are 
coprime integers, R > 0, the discriminant A = R - 4Q, and n > 0 is an integer. 

The main theorem of this paper is a complement of that of Lehmer [1], and this result is 
essential in the applications to exponential Diophantine equations, as we will show in another 
paper. Moreover, the main results of McBaniel [2] will be extended, and this can be deduced 
easily from the main theorem of this paper. 

It is easy to see that U2k+l and V2k are rational integers and that U2k and V2k+l are integral 
multiples of Rin. Let Z be the set of integers, Rl/2Z = {aRl/2 ] a e Z}. If we define the divisibility 
of the elements of the set Z u Rll2Z as follows: For any A, B e Z KJ RmZ, A\B o B = A-C, and 
C G Z U J?1/2Z, then most of the propositions below are well known (see, e.g., [3], Chapter 2). 
Proposition 1(e) was recently proved in [2]; however, as we will show, this proposition is not true 
for the most general definition of the generalized Lucas sequences as defined above. 

Proposition 1: Let m and n be arbitrary integers: 
(a) Vn

2-AUt = 4Q". 
(b) If»*|», then Um\U„; if nlm is odd, then Vm\V„. 
(c) U2n^UnVn;V2n^V2-~2G\ 
(d) lfd = gcd(m,n),thmgcd(Um,UJ = Ud, 
(e) lfd = gcd(w, «), then gcd(Fm, Vn) = Vd if mid and nld are odd, and 1, or 2, otherwise. 
(f) If p is a prime and Q) is the minimal positive integer with p\Um ([1] defined m to be the 
appearance of/? in Un), then for any positive integers k and A, we have px+l\Ukmpx. 
(g) If an odd prime/?, with p\RA9 e = (AR Ip) is the Kronecker symbol, then Up-£ = 0 (mod/?). 

For any prime/?, A GZ^JR1/2Z, ordpA is defined to be the rational number s with 2s being 
an integer and /?2*||.42, denoted by otdpA = s.We now have the following theorem. 

Theorem 1: If/?, q are odd primes and s, (are positive integers with /?5||A, q'\\R, then: 
(a) If ps > 3, then ordpUm = ordpm, ordp^ = 0. 
(b) For q* > 3: if m is odd, then oidqUm = 0, o r d ^ IVl = ordqm; ifm is even, then o r d ^ = 0, 
ordqUm = ordqm + t/2. 
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(c) Suppose ps = 3 and X is an integer with 3X \\3R + A, then ord3^ = 0, ord3U3m = X + ord3w; if 
3fiw, then ord3£/m = 0. 
(4) Suppose now that gf = 3 and ju is an integer with 3 |̂|3A + J?. If m is odd, then ord3l7m = 0, 
ord^^ IVX = ordyw+ //, and ord3^ IVX = 0 with 3|/w; if m is even, then ord3P^ = 0, ord3U3m = 
o rd^ + // +1 / 2 , and ord3Um = 1/2 with 3|/w. 
(e) Let 2||i?: if 2jw, then ord2Um = ord2Vm/Vt = 0 (2|iw); if 2||m, then ord2Fm = ord2F2 and 
ord2Um = 1/2; if 4\m, then ord2^ = 1/2 and ord2Um = ord2/w-1/2. 
0 Let 4|J?: if m is odd, then ord2C/w = 0 and ord2J^ = ord2J^; if m is even, then ord2Um = 
ord2w + yord2i?-l and ord2J^ = 1. 

Proof: We divide the proof of the theorem into three parts: 
(I) If /w is odd, subtracting the w* power of 2/? = Rl/2 - A1/2 from the m^ power of 2a = 

i?1/2+A1/2,weget 
(/w-l)/2 / \ (»i-l)/2 / t \ 

Let w be a positive integer with pu\\m, u > 0, and notice that 

ordp ~^— A=si + n- ordp(2/ +1) > si + w - log/7(2i +1). (4) 

If ps * 3, then p51 > 2/ +1 for any i > 1, so from (4) we know that every term of the summation of 
(3) is a multiple of pu+l; therefore, ordpUm = ord^w = u. This result together with Proposition 
1(a) and (i?, 0 = 1 implies that ordpFm = 0, i.e., Theorem 1(a) holds for odd m. 

If ps = 3, then 4U3 = 3i? + A, so from (3) we conclude that 3\Um when 3\m. Subtracting the 
w* power of 2/?3 = V3- Al/2U3 from the nfl* power of 2a3 = V3 + Al/2U3, we get 

(w-l)/2 / \ 

2"-1t/3m/C/3= X 2^lKAC/32)'F3m"2'"1- (5) 
1=0 V J 

Similar to the above, we have ord3U3m/U3 = ord3m and ord3J^ = 0, i.e., Theorem 1(c) holds for 
oddiw. 

If m is odd, from [1] and Proposition 1(a) we have 
(m-l)/2 / \ 

TT'VJV^ S L^AR'A^2^'2, (6) 

R(Vm/Vlf-AU2=4Qm. (7) 

Symmetrically, from (6) and (7) we conclude that Theorem 1(b) and (d) hold for odd m. 
(H) Now suppose that m is even, then U2 = R9 so R\U% for any even m; therefore, o r d ^ = 

0=ord^Fm by Proposition 1(a). Let m-2aml, 2\n\9 a > l , be an integer, and notice that by 
Proposition 1(c) we have 

n = UmVMV7nu...V,a.l . (8) 
2aml

 m\ ™\ 2i«i 2alml ^ ' 

Thus, ordpUm = ordpUmi and ordqUm = ord^FWj, and from the above result of the odd number mx 

we know that Theorem l(a)-(d) hold for even m. 
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(DO) For Theorem 1(e), It is well-known that {Um} satisfies the following recurrence relation, 

U^R^U^x-QU,,, U0 = 09UX = 1. (9) 
Since (R, Q) = 1 and 2||i?, we have Q = 1 (mod 2) and A = R-4Q = 2 (mod 4). Taking modulo 
2 for the sequence (9), we obtain a sequence with a period 4, 

Um^Q,lRl/\X0^R1/\\.^ (10) 

If 2\m, then (10) implies that ord2C/m = 0, and from 2||A and V% - At/2 = 4Qm we have 
ord2Fw = 1/2; if 4\m, then (10) implies that oid2Um > 1, and from 2||A and V2 - Mil = 4(T we 
have ord2FOT = 1. Then from (8) we have 

ord2C/m = ord2C/Wi + o r d ^ + £ ord^, = o + - + ( a - l ) = ord2#i - - . 

If 2||/w, say, m = 2ml, 2\n\, then F2 = J?-2i2 = 0 (mod 4), and adding the m^ powers of 
2a2 = V2 + (i?A)1/2 and 2^2 = V2 - (RA)y\ we get 

{mx-l)l2 / \ 

^-iv2mi/v2= 2 (2riijF^(Ai?)^-2?"i>/2 ( i i ) 

and ord2(F2
2l'(Ai?)(OTl"2l"1)/2) > ml - 1 , and the equality holds if and only if / = 0. Thus, by taking 

modulo 2mi for (11), we get ord2F2wf| /F2 = 0, and from (8) we have ord2F2mj = ord2F =1 /2 . 
Summing the above result we complete the proof of Theorem 1(e). 

For Theorem 1(f), if 4\R, put R = 4Rl9 then A = J?-40 = 4AX and g is odd, so 2\RxAl9 and 
if m is odd, 

(w-l)/2 / \ (w-3)/2 _ / T \ 

i=0 ^ ' i = l ^ ' 

Therefore, ord2C/wl = 0. Similarly, ord2Fw = ordjFj. If m is even, then from (8) we have 2\Um9 

and V*/4- AjC/2 = Qm implies that Vm12 is odd, i.e., ord2Fm = 1. From the results for odd m and 
again using (8) we have ord2C/m = ord2m~l + ord2F1 = ord2#w-f |-ord2J?-l. This completes the 
proof of Theorem 1. 

Remark 1: Put ax = aw\ fix = /J"1, ^ = ax + fiX9 Aj = ( ^ - ^ ) 2 , t / ^ = « -PDHPd -fix), and 
pO) = a j +pn

x. Then we have U® = Umn/Um, Fw
(1) = Vmm and A! = AC/2. Applying Theorem 1 

to Ujp, V£l\ we obtain the largest power off in U„ or Vn \£q\Um or q\Vm. 

Now let us remark that if 2 \R then 2 f A, since U„ and Fw satisfy recurrence relation (9) and 
the following one, respectively, 

V„2 = ̂ ^ - eFro, F0 = 2, Vt = Rm. (12) 

Taking modulo 2, we have 2\U^m when m> 0, and if 2f 0 then 2|t/w and 2\Vm if and only if 
31m and 3\n, respectively. Hence, from Remark 1 and the above discussion, we need only con-
sider the case of2\R when we study the behavior of the 2-part of Um and V„. 

We will now prove the following corollary which is an extension of Proposition 1(e) above. 
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Corollary: If d = gcd(m,ri), then gcd(Vm,V„) = Vd ME mid and nld are odd, and 1, V2, or 2, 
otherwise. 

Proof: For J = gcd(m, n), we may suppose without loss of generality that km = d~h£n, where 
A and £ are positive integers. If k is odd, notice that VjV^ and (C/ ,̂ FOT)|2 for any m > 0 and 

2F^ = (a*-fidXat* - (3tn) +VdVin (13) 

and V„\Vini££ is odd, Fj[/^„ if ^ is even. Thus, 

(Vm,V„)\((<*d-fid)(<xe"~P(n\ VdVj\Wd. (14) 
If k is even, then In is an odd multiple of d, and we see that 

2(akm-fikm)/(ad-pd) = Vd(al"-/3e")/(ad-0d)+V(„, (15) 

Vm\2iatm-fikn)/(ad-fia), and V„\Ve„, so 

<ym,Vn)\Wd. (16) 
Furthermore, for any prime divisor /? of 2Vd from Remark 1, applying Theorem 1 to Vm and Vn we 
obtain the desired results. 

Remark 2: Lehmer proved the following theorem. 

Theorem A (Lehmer [1], Theorem 1.6): If 2a is a positive integer such that qa is the highest 
power of a prime q dividing Um, and ifk is any integer not divisible by q, then for any integer X, 
U^ x is divisible by qa+A, and if qa * 2, this is the highest power off dividing U^ x • 

Comparing Theorem A with Theorem 1 of this paper, we can easily find out that: If qa = 3, 
m = 2y 3||i?, and 9|3A + R, and we put X = 1 in Theorem A, then the last conclusion of Theorem 
A is incorrect. This is indispensable in its applications to exponential Diophantine equations, as 
will be shown in a future paper. 

Example: Let R = 2 and A = - 1 , then we have 
F0 = 2, F ^ V 2 , F2 = 4, V3 = 5j2, F4 = 14, F5 = 1<W5,..., 

which means that g c d ^ , V5) = ^j2. 
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