SECOND-ORDER LINEAR RECURRENCES OF COMPOSITE NUMBERS

Anatoly S. Izotov

Mining Institute, Novosibirsk, Russia e-mail: izotov@nskes.ru (Submitted May 2000-Final Revision July 2001)

In [3], W. Sierpinski proved that there are infinitely many odd integers k (Sierpinski numbers) such that $k2^n + 1$ is a composite number for all $n \ge 0$, i.e., he found that the recurrence $u_{n+2} = 3u_{n+1} - 2u_n$, $n \ge 0$, has infinitely many initial values $u_0 = k + 1$ and $u_1 = 2k + 1$ that give composite u_n for all $n \ge 0$. Analogously, R. L. Graham [1] and D. Knuth [2] found composite integers F_0 , F_1 , $(F_0, F_1) = 1$ for the Fibonacci-like sequence $\{F_n\}$, $n \ge 0$, $F_{n+2} = F_{n+1} + F_n$ such that F_n are all composite numbers.

In the construction of composite sequences, the authors [1]-[3] used the idea of a covering set, i.e., a set $P = \{p_1, p_2, ..., p_h\}$, $h \ge 1$, of prime numbers such that, for each $n \ge 0$, there exists at least one $p \in P$ such that $u_n \equiv 0 \mod p$.

In this note we give a class of integers a > 0, b, (a, b) = 1 and find integers u_0 , u_1 , $(u_0, u_1) = 1$ such that the sequence $\{u_n\}$, $n \ge 0$, $u_{n+2} = au_{n+1} - bu_n$ with initial values u_0 , u_1 contain only composite members. For even n, u_n has an algebraic decomposition while, for odd n, u_n has a covering set $P = \{p\}$.

To prove the main theorem, we need the following three lemmas.

Lemma 1: Let integers a, b be such that $\Delta = a^2 - 4b \neq 0$. Let integers v_0 , v_1 be initial values for the recurrence $v_{n+2} = av_{n+1} - bv_n$, $n \ge 0$. Then for the sequence $\{u_n\}$, $n \ge 0$, and $u_0 = v_0w_0$, $u_2 = v_1w_1$, $u_{n+2} = au_{n+1} - bu_n$, $n \ge 0$, we have

$$u_{2n} = v_n w_n, \tag{1}$$

where

$$w_0 = k(2v_1 - av_0)/d, \ w_1 = k(av_1 - 2bv_0)/d,$$
(2)

 $d = (2v_1 - av_0, av_1 - 2bv_0), k$ is an arbitrary integer and $w_{n+2} = aw_{n+1} - bw_n$.

Proof: Let w_0 , w_1 be arbitrary integers. We prove that, if $u_{2n} = v_n w_n$, then w_0 , w_1 satisfy (2). It is known that the sequence $\{x_n\}$, $n \ge 0$, satisfies the recurrence $x_{n+2} = ax_{n+1} - bx_n$ if and only if $x_n = A\alpha^n + B\beta^n$ for $n \ge 0$, where A, B are constants and α , β are the distinct roots of the characteristic polynomial $z^2 - az + b$, since $\Delta = a^2 - 4b \ne 0$. So we have

$$v_n = A_1 \alpha^n + B_1 \beta^n, \ w_n = A_2 \alpha^n + B_2 \beta^n,$$

where $\alpha = (a + \Delta)/2$, $\beta = (a - \Delta)/2$, and

$$A_{1} = (v_{1} - \beta v_{0})/(\alpha - \beta), \quad B_{1} = (\alpha v_{0} - v_{1})/(\alpha - \beta),$$
$$A_{2} = (w_{1} - \beta w_{0})/(\alpha - \beta), \quad B_{2} = (\alpha w_{0} - w_{1})/(\alpha - \beta).$$

Furthermore,

$$v_n w_n = (A_1 \alpha^n + B_1 \beta^n) (A_2 \alpha^n + B_2 \beta^n) = A_1 A_2 \alpha^{2n} + (A_1 B_2 + A_2 B_1) \alpha^n \beta^n + B_1 B_2 \beta^{2n}$$

So, if $A_1B_2 + A_2B_1 = 0$, the sequence $\{u_k\}$, $k \ge 0$, $u_k = A_1A_2\alpha^k + B_1B_2\beta^k$ satisfies $u_{k+2} = au_{k+1} - bu_k$ and $u_{2n} = v_nw_n$. Consider

JUNE-JULY

266

$$0 = A_1 B_2 + A_2 B_1 = (v_1 - \beta v_0)(\alpha w_0 - w_1)/(\alpha - \beta)^2 + (\alpha v_0 - v_1)(w_1 - \beta w_0)/(\alpha - \beta)^2$$

= [(\alpha + \beta)(v_1 w_0 + v_0 w_1) - 2\alpha \beta v_0 w_0 - 2v_1 w_1]/(\alpha - \beta)^2.

Since $\alpha + \beta = a$, $\alpha\beta = b$, we have $a(v_1w_0 + v_0w_1) - 2bv_0w_0 - 2v_1w_1 = 0$, or

 $(av_1 - 2bv_0)w_0 = (2v_1 - av_0)w_1.$

If $d = (2v_1 - av_0, av_1 - 2bv_0)$ and k is an arbitrary integer, then we have (2).

Lemma 2: Let a > 1, m > 1, and b be integers such that $a \equiv 0 \mod m$ and u_0 , u_1 are initial values for the recurrence $u_{n+2} = au_{n+1} - bu_n$, $n \ge 0$. If $u_1 \equiv 0 \mod m$, then $u_{2n+1} \equiv 0 \mod m$ for $n \ge 0$.

Proof: Consider the sequence $\{U_n\}$, where $U_0 = 0$, $U_1 = 1$, $U_{n+2} = aU_{n+1} - bU_n$, $n \ge 0$. It is known that $U_{2n} \equiv 0 \mod a$ for $n \ge 1$. Since $u_{2n+1} = u_1U_{2n+1} - bu_0U_{2n}$ for $n \ge 0$, we have $u_{2n+1} \equiv 0 \mod m$.

Lemma 3: Let integers a > 0 and b be such that (a, b) = 1, $\Delta = a^2 - 4b > 0$, and u_0 , u_1 be initial values for $u_{n+2} = au_{n+1} - bu_n$, $n \ge 0$, such that $u_0 > 0$, $(b, u_1) = 1$, $(u_0, u_1) = 1$, and $u_1 > au_0/2$. Then $(u_n, u_{n+1}) = 1$ and $u_{n+1} > au_n/2$ for n > 0.

Proof: We prove this lemma by induction. We first prove that $(b, u_n) = 1$ for n > 1. By the condition of the lemma, $(b, u_1) = 1$. Let $(b, u_i) = 1$ for $1 < i \le n$. For i = n+1, we have $(b, u_{n+1}) = (b, au_n - bu_{n-1}) = (b, au_n) = (b, u_n) = 1$. Since $(u_0, u_1) = 1$, let $(u_i, u_{i+1}) = 1$ for $1 \le i \le n$. For i = n+1, we have $(u_{n+1}, u_{n+2}) = (u_{n+1}, au_{n+1} + bu_n) = (u_{n+1}, u_n) = 1$. By the statement of Lemma 3, $u_1 > au_0/2$. Assume that $u_i > au_{i-1}/2$ is true for $1 < i \le n$. Then, for i = n+1,

$$u_{n+1} = au_n - bu_{n-1} = au_n/2 + au_n/2 - bu_{n-1}$$

> $au_n/2 + a(au_{n-1}/2)/2 - bu_{n-1} > au_n/2 + \Delta u_{n-1}/4 > au_{n-1}/2.$

Thus, the lemma is proved.

We now proceed to prove the main theorem.

Theorem: Let odd a > 2 and b be integers such that (a, b) = 1 and let $\Delta = a^2 - 4b > 0$. Let p be an odd prime divisor of a such that the Legendre symbol (b/p) = 1 and let t > 0 be any solution of the congruence $x^2 \equiv b \mod p$. Let $v_0 > 1$, $(a, v_0) = 1$, and $v_1 = tv_0 + kp$ for some positive k such that $(a, v_1) = (v_0, v_1) = (b, v_1) = 1$, $v_1 > av_0/2$. Let $d = (2v_1 - av_0, av_1 - 2bv_0)$.

Then the sequence $\{u_n\}$ with initial values $u_0 = (2v_0v_1 - av_0^2)/d$, $u_1 = (v_1^2 - bv_0^2)/d$, and $u_{n+2} = au_{n+1} - bu_n$ for $n \ge 0$ is a sequence of composite numbers.

Proof: By Lemma 1, $u_{2n} = v_n w_n$, $n \ge 0$. Here $v_{n+2} = av_{n+1} - bv_n$, $n \ge 0$, for given initial values v_0 , v_1 , and $w_{n+2} = aw_{n+1} - bw_n$, $n \ge 0$, for initial values $w_0 = (2v_1 - av_0)/d$, $w_1 = (av_1 - 2bv_0)/d$.

We have $u_0 = v_0 w_0 = (2v_0 v_1 - av_0^2)/d$, $u_2 = v_1 w_1 = (av_1^2 - 2bv_0 v_1)/d$. Hence,

$$u_1 = (u_2 + bu_0) / a = (av_1^2 - abv_0^2) / ad = (v_1^2 - bv_0^2) / d.$$

Since $t^2 \equiv b \mod p$, $v_1 = tv_0 + kp$, and (b, d) = 1, we have $u_1 \equiv 0 \mod p$. By Lemma 2, $u_{2m+1} \equiv 0 \mod p$ for n > 0.

Further, $(u_0, u_1) \le (u_0, au_1) = (u_0, u_2 + bu_0) = (u_0, u_2) = (v_0 w_0, v_1 w_1)$. Consider

$$(v_0, w_1) < (v_0, dw_1) = (v_0, av_1 - 2bv_0) = (v_0, av_1) = 1.$$

2002]

267

Analogously, $(w_0, v_1) \le (dw_0, v_1) = (2v_1 - v_0, v_1) = 1$. Since $(v_0, v_1) = 1$ and $(w_0, w_1) = 1$, we obtain $(u_0, u_1) = 1$, and by Lemma 3, $(u_n, u_{n+1}) = 1$ for $n \ge 0$.

Finally, consider

$$u_1 - au_0/2 = (v_1^2 - bv_0^2)/d - (2av_0v_1 - a^2v_0^2)/2d = (v_1 - av_0/2)^2/d + \Delta v_0^2/4d > 0.$$

By Lemma 3, $u_{n+1} > au_n/2$ for n > 0. Thus, the theorem is proved.

On the other hand, it is easy to prove that there are no primes p_0 , p_1 such that $p_n = ap_{n-1} - bp_{n-2}$, a > 0, (a, b) = 1, and $a^2 - 4b > 0$ are primes for all n > 1.

Indeed, if $b \equiv 0 \mod p_1$, then $p_2 = ap_1 - bp_0 \equiv 0 \mod p_1$. Let $b \neq 0 \mod p_1$, then there is an $m \le p_1 + 1$ such that $U_m \equiv 0 \mod p_1$, where $U_0 = 0$, $U_1 = 1$, $U_{n+2} = aU_{n+1} - bU_n$, $n \ge 0$. Since $p_{m+1} = p_1U_{m+1} - bp_0U_m$, we have $p_{m+1} \equiv 0 \mod p_1$.

It is interesting to find a sequence of primes of maximal length for the Mersenne recurrence $p_{n+2} = 3p_{n+1} - 2p_n$ for $n \ge 0$, where $p_0, p_1 > p_0$ are given primes. The numerical search for small p_0, p_1 gives the sequence of nine primes {41,71,131,251,491,971,1931,3851,7691}. The more exact estimate for length N primes in the Mersenne recurrence uses

$$p_n = p_0 M_{n+1} - 2p_{-1} M_n = p_0 M_{n+1} - (3p_0 - p_1) M_n,$$
(3)

where $M_0 = 0$, $M_1 = 1$, $M_{n+2} = 3M_{n+1} - 2M_n$, $n \ge 0$. p_0 , p_1 are given primes and $3p_0 - p_1 \ne 2^t$, t > 0. Let $m = \min_{q>2} \{ \upsilon(q) : q | (3p_0 - p_1) \}$, q is prime, and let $\upsilon(q)$ be the minimal s such that $m_s \equiv 0 \mod q$. Then by (3), $p_m \equiv 0 \mod q$ and $N \le m - 1$. N is equal to the upper bound, e.g., for the sequence {3467,6947,13907,27827,55667,111347,222707,445427,890967}. Now, since $p_0 = 3467$, $p_1 = 6947$, and $11 | 3454 = 3p_0 - p_1$, we have $m = \upsilon(11) = 10$ and N = 9.

REFERENCES

- 1. R. L. Graham. "A Fibonacci-Like Sequence of Composite Numbers." *Math. Magazine* 37 (1964):322-23.
- 2. D. Knuth. "A Fibonacci-Like Sequence of Composite Numbers." Math. Magazine 63 (1990):21-25.
- 3. W. Sierpinski. "Sur un Probleme Concernant les Numbres $k2^n + 1$." *Elem. Math.* 15 (1960): 73-74; Corrig. 17 (1962):85.

AMS Classification Number: 11B37

*** *** ***

Author and Title Index

The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD indices for Volumes 1-38.3 are now on The Fibonacci Web Page. Anyone wanting their own copies may request them from **Charlie Cook** at **The University of South Carolina, Sumter**, by e-mail at <**ccook@sc.edu>**. Copies will be sent by e-mail attachment. PLEASE INDICATE WORDPERFECT 6.1, MS WORD 97, or WORDPERFECT DOS 5.1.