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1. INTRODUCTION 

Let a0, . . . , a M (r > 2, ar_x & 0) be fixed real numbers. An r-generallzed Fibonacci sequence 
{Vn}*™0 Is defined by the linear recurrence relation of order r, 

where V0, ...,Vr_x are specified by the initial conditions. In the sequel we refer to these sequences 
as sequences (1) or (1). When at (0 < i < r -1) are nonnegative and gcd{/ +1; ax > 0} = 1, where 
gcd means the greatest common divisor, it was established in [10] that the characteristic polyno-
mial P(X) = Xr - aQXr~l - >— ar_2X-ar_j has a unique positive zero q and |A|<$ for any 
other zero X of P{X). And in [2] and [8] it was shown, by two different methods, that the limit 
of the ratio Vn lqn exists if and only if the Ostrowski condition gcd(i +1; at > 0} = 1 is satisfied. 

The purpose of this paper is to study the extended Ostrowski condition by considering ( Q : 
gcd{i + l; at * 0} = 1 for sequences (1) in the case of real coefficients (Section 2). We apply 
Horner's diagram to the convergence of sequences (1) (Section 3). An extension of ( Q to the 
case of real coefficients is studied in Section 4. Finally, some concluding remarks are given in 
Section 5. 

2. CONDITION (C) FOR SEQUENCES (1) 

The Horner diagram for a given polynomial P(X) = a0Xn + • • • + an_tX + an, where a0, al9 ..., 
an are real numbers, is a process for computing the value of P(g) for every x = £ • Its main Idea 
consists of writing P ( ^ = (" , ( (^£+ a i )£+a2)£+" ' , )£ + a/r Therefore, we can consider the 
finite sequence {Pj}o<j<n defined as follows: 

Hence, we derive that Pn = P(g) and P(X) = Q(X)(X - £ ) + />(£), where Q(X) = P0Xn~l + • • • + 

Suppose that sequence (1) converges. For limw_̂ +Q0F„ * 0, we have aQ +ax + ••• +ar_x = 1. 
Suppose also that 

<%+(*! + —+ar_x = \. (2) 
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Set bt = EyJ aj = fit and d = gcd{j +1; a} * 0}. Then bt = fit for £ = 1 and condition (2) implies 
that b0 = 1. Assume that the following condition is satisfied: 

2>,*0- (3) 

By direct computation, we can verify that we have 

V„ +b^i + -+br-1V„-r+l = K^+hV^ + -+br_1V0. (4) 
Thus, 

This expression was established in [2] and [8]. If (3) is not satisfied, the characteristic polynomial 
takes the form P(X) = (X- l)(Xr_1 + b^'2 + — +br_l). Hence, 2 = 1 is of multiplicity > 2. 
Then {VH}*™Q does not converge for any choice of the initial conditions. 

In the case of nonnegative coefficients satisfying (2), it was shown in [2] and [8] that 
Ximn_^Ji<0Vn exists for any choice of the initial conditions if and only if ( Q is satisfied. Let us 
establish that (C) is still necessary in the case of arbitrary real coefficients. In [9] it was estab-
lished that the combinatorial form of a sequence (1) is given by 

Vn = A0p(n, r) + AlP(n - \ r) + • • • + Ar_lP{n - r +1, r) (5) 

for any n > r, where Am = ar_ym + • • • + ajf.^ and 

with p(r9 r) = 1 and p(n9 r) = 0, if n > r -1. For VQ = • • • = Fr_2 = 0 and Vr_l = 1, we have F„ = 
p(n +1, r) for n > 0. In the case of nonnegative coefficients, the sequence 

q' '"~r J„=o' 
where q is the unique positive characteristic root, converges with 

lim £ & 2 = 1 (7) 

whereAi = Z ^ # r ( s e e [ 9 ] ) . 

(The combinatorial form of sequence (1) has been studied by various methods and techniques; 
see, e.g., [6], [7], [9], and [11].) 

Suppose that a0,...,ar-1 are real numbers and let aj^aj^--^ajs be the nonvanishing coeffi-
cients (a^ = ar„4 or/, = r -1). Then (6) takes the form 

_ (*i +-+*i)! k L L 

(i0+l)^+(/1+l)^ + -..+(/,+l)^=»i-r. % A ' " A ' 

Thus, we deduce that p(nyr) = 0 for « < r or n^kd (k GN), where rf = gcd{y +1; ay. ̂  0}. For 
d = gccl(j +1; a. * 0} > 2, it was shown in [8] that the sequence (1) has d subsequences of type 
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(1) in the case of nonnegative coefficients. For a0, ...,ar_x real, we can derive from (C) that the 
sequence (1) also owns d subsequences {V^}n>0 (0<j<d-l) of type (1) defined as follows: 
KU) =Vnd+j = AjP(nd,r) + Ad+Jp((n-l)d,r) + ... + A^d^ for 0< j < J - l . So, 
if the sequence (1) converges for any choice of initial conditions, we have Vn ~V^ for any j , 
which implies that d - gcd{/ +1; a. * 0} = 1. 

Proposition 2.1: Let {Vn}n>0 be a sequence (1), where a0, ...,ar_j are real numbers satisfying (2). 
If {Vn}n>0 converges for any choice of the initial conditions, then condition (C) is satisfied. 

The following example allows us to see that condition (C) is not sufficient for the conver-
gence of a sequence (1), in the case of arbitrary real coefficients, with (2). 

Example 2.1: Let {Vn}n>0 be a sequence (1) whose characteristic polynomial is 

P(X) = X3-a0X2-alX-a2 

with aQ = 2 + v, ax = -(1 + 2v)9 and a2~v ( v * 0 , - 2 ) . Thus, Sy=oaj = 1 a n^ ( Q is satisfied. 
Because the multiplicity of the characteristic root X - 1 is 2, the sequence {^}w>0 does not con-
verge for any choice of initial conditions. 

3, CONVERGENCE OF SEQUENCES (1) 

Horner's diagram is used for practical computations of values of polynomials (see, e.g., [1]). 
In this section we apply this method to the convergence of some sequences (1), where the role of 
the initial conditions is considered. 

Let {VA(ri)}n>0 be a sequence (1) whose initial conditions are A = (aQ,..., ar_x). Let Xh..., 
Xs be its real characteristic roots with multiplicities ml,...,ms, respectively. Because the coeffi-
cients and initial conditions are real numbers, we deduce that if X = lim „_»+«, y ^ exists, thenX 
is a real characteristic root. 

Proposition 3.1: Let {VA(n)}n>0 be a sequence (1) whose coefficients and initial conditions are 
real numbers. Suppose that 

k 
]Ta y < l f o r 0 < £ < r - l . (8) 
y=o 

If lim^^^ Vy^^ exists and is positive, then {VA(n)}n>0 converges. 

Proof: Condition (8) implies that b0 = 1 and hk = l-Zy!oay ^ 0- Hence, from the Horner 
diagram we deduce that, for any real zero X of the characteristic P(X), we have X<\. Since 

s ms-l 

where |Xx \ > \X21> • • • > \Xt | > • • • > \Xk | and filtJ are obtained from initial condition A (see [2]), it 
follows that when l im^.^ V/^TJ? = A>t exists and is positive, we have 

V (nA-W s ms~l m'~l 

W->+«0 VA{fl) l=j J=0 / = 0 
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For Xt < 1, we deduce that \\mn^+mVA(n) = 0. For A, = 1, condition (8) implies that Xt = 1 is a 
simple characteristic root. Also? |A.|<Xf = 1 for j>i. Therefore, Binet's formula implies that 
{VAin))n>Q converges. D 

Remark 3d: We can also use Descartes1 rule of signs to derive the convergence of {VA(n)}n>Q. 
More precisely, we have P(X) = (b0Xr~l + • • • + b^X -1) + P(l), where ft0 = 1, ft* = 1 - YJ~^ai 

> 0, and P(l) = 1 - Sylo #/ ^ °> by (9). From Descartes1 rule? we have Q(x) > 0 for every x > 0. 
Thus, P(x) > 0 for every x > 1. Hence, 1 < 1 for every positive zero 1 of P(X). 

Proposition 3.2: Let {^(w)}„^0 be a sequence (1) whose coefficients and initial conditions are 
real numbers. Suppose that 

k r-2 
aQ>-\ £(- iy+ 1ay£lfor l£Jfc<£r-2, X( - iy + 1 a , < L (9) 

If l im^.^ y ^ exists and is negative, then {VA(n)}n>0 converges. More precisely, we have 
limn^o0VA(n) = 0. 

Proof: We have Q(X) = (-IJP(-X); thus, 1 is a zero of P(X) if and only if - 1 is a zero 
of Q(JQ. Set Q(X) = (b0Xr~l + • • • + ftr_,)(Z -1) + 2(1); expression (9) implies that b0 = 1, 6* = 
l+Z^oC-iy^y^O (* = l , . . . , r -2) , and 6 ^ = 1 + S ^ o ( - i y « / > ° - We now have g ( l ) ^ 0 and 
Homer's diagram implies that X < 1 for any real zero 2 of Q(X). Thus, for any real zero X of 
P(X), we have also A > - 1 . Since l im^^—^™ exists, it follows from Binet's formula that 
WA(n)}n>® converges with lim^+00 VA(ri) = 0. D 

Example 3.1: Let {^(w)}„>0 be a sequence (1) defined by 

VA(n + l) = ^VA(n) + ̂ VA(n-l) fo r«>l . 

It is easy to see that a0 = ̂  and at = ̂  satisfy condition (9). For ^ = (1, - -j), we have 

,im z&ttt=-i<o. 
Thus, {VA(n)}n>0 converges with limri^<X)VA(n) = 0. For any A*(la,-•—), where a ^ O is a 
real number, we have 

lim -
VA(n) 5 

and {VA(n)}n>0 diverges. 

r VA(n + l) 6 A lim - 4 ; , , = -= > 0 

4. EXTENSION OF (C) AND CONVERGENCE OF (1) 

Let {f^J^o ^e a sequence (1), where a0, ...,ar_! are real numbers satisfying (2). Then 
P(X) = (X-i)Q(X)9 where g(X) - b ^ X ^ + ^ X ^ - h . . . +^_j with ^ = E ^ o , , where ft0 - 1. 
Suppose that fy * 0 (1 < j < r -1) and set 
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H = H(Q) = max\ 
°0 K 

Jr-\ 

"r-2 

Let R(X) - Xr l - Xr 2 X-l and let q > 0 be its unique positive zero. Then q > 0 is 
also a solution of the equation Xr - 2Xr"~l +1 = 0. A straightforward computation allows us to 
derive that 

^ ) < < r < 2 . 
Lemma 4.1: Let ^ > 0 be the unique positive zero of R{X)-Xr x-
M>0. Then the following two conditions are equivalent: 

Mq<\; 

M<\ and Mr-2M + l>0. 

•X r-2 X-l and 

(10) 

(11) 

Proof: It is clear that q>\. Suppose that Mq < 1. Then we have 0 < M < \lq<\. Since 
g(x) - xr - 2xT"~l +1 is a nondecreasing function on [q9 + oo), we have g(q) = 0 < g(l/M). Thus, 
we have M r - 2 M + 1>0. Conversely, suppose that 0 < M < 1 and Mr-2M + l>0. Then 
0<(Mr-2M + l)/Mr = g(l/M) and 1/M>1. Since g(x)<0 for l < x < ^ , we must have 
1 /M># , i.e., Mq<\. U 

Lemma 4.2: Let Q(X) = h0Xr'l+hlXr~2 + ••• +br_v Assume that b0 = 1 and iy * 0 for 1 < j < 
r - 1 . Then the zeros of Q(X) have modulus bounded by Hq. 

Proof: For every real number X, we have 

leW^ix-1!-!*^-2! ^ i 

IX-11 -x r-2 ^2 ^1 yr-3 
*1 h 

Jr-\ 
Jr-2 

A 
An 

> | X rl - HXr~2 - IPX"'3 Hr~l 

If X = zifg, where |z| > 1, then 

\Q{X)\ > \z\r~lHr-lqr-l-H\z\r-2Hr-2qr-2- - . - fT" 1 = Hr-lR(\z\q)>0. D 

Suppose that Q(l) ^ 0. Let X = aY (a > 0) and let 

Qm = Yr-l+^r-2+\r-3 + --'+^. 
^aX / a a2 ar~l 

If yQ is a zero of Qa(X), then x0 = qy0 is a zero of Q(X) and ifa = H{Qa) = ̂ . Let a > 0 be 
such that Ha<\ and if£ - 2//a 4-1 > 0. Then Lemma 4.2 implies that the zeros of QJJ) are of 
modulus < 1 and those of Q(X) are of modulus < a. Let 

a0 = i n f { a > 0 ; i f a < l a n d i ^ - 2 i ^ + l>0}. 

Elementary computation using the function f(x) = xr -2JC + 1 allows us to deduce that aQ = ^-, 
where JC0 * 1 is the other positive zero of the equation xr - 2x + l = 0. Thus, we can formulate 
the following result. 
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Proposition 4.1: Let Q{X) = Xr~l + bxXr~2 + • • • + br_x satisfy 0(1) * 0. Assume that the b/& are 
not zero. Then, for any A of Q(X), we have |2 | > ̂ -? where x0 ̂  1 is the positive zero of 
x r - 2 x + l = 0 

The connection between (Q and (10) may be expressed as follows. 

Corollary 4.1: Let q be the unique positive zero of R(X) = Xr~l - Xr~2 X-l. Assume 
that the bjs are not zero and that 

H = max< \bx\, 
\ 

K-i 
Jr-2 

Then, for M = Hy condition (10) implies condition (C). 

Proof: Suppose that condition (10) is satisfied. Then Lemma 4.1 implies that H < 1. If 
aQ = 0, wre can deduce that b0 = bx = l and thus H > 1, which gives a contradiction. • 

For the convergence of sequences (1) in the case of arbitrary real coefficients, condition (10) 
for M = H may replace (C) considered in the case of nonnegative coefficients. More precisely, 
we have the following result. 
Proposition 4.2: Let {VJ^Q be a sequence (1), where a0, ...,ar_1 are real numbers satisfying (2). 
Assume that Homer's J/s are not zero and that 

H = max\ \bx\, 
Jr-\ 
Jr-2 

Then, if (10) is satisfied for M = H, the sequence {VJn>0 converges for any choice of initial 
conditions. 

Proof: Set C = Vr_t + b^r_2 + • • • + br_yQ and L = 1+^+.^+fe • Consider the sequence {Wn}n>0 

defined by Wn = Vn - L. From (4), we deduce that Wn = -bJV^ + • • • - Ar_!^_r+1 for T? > r - 1 . 
Thus, {^}„>0 is also a sequence (1) of order r-1 whose combinatorial expression defined by (5) 
and (6) is 

Wn=BlpXn,r~l) + Blp%n-\r--l) + -'+Br_lpe(n-r + 2,r-l) forn>r-l, 

where Bm = - A r _ ^ W _ ! (m = 1, . . . ,r-1) and 

(*l + " + * r - l ) ' j k , A - , 
£ I #, s Cl •••Cr-1 > Pf(n,r~l)= X 

fc1+2fci+"-+(r-l)Jfcr_1 = w-r+l A - l ' 

where cf = -bj9 p?(k9 k) = l, and //(«, k) = 0 if n> k-1. Therefore, {FJ^>0 converges for any 
choice of initial conditions if and only if limn__^+(X)Wn = 0 if and only if llmn_^+O0pe(n,r-1) = 0. 
Suppose bj * 0 (1 < j < r -1) . Then 

\h\h-\br-i\K-l = \h l^1+"-+ r̂_i 

h 
k2 + --+kr_l K-x 

Jr-2 

K-

Thus, we have 

2002] 391 



CONVERGENCE OF r-GENERALIZED FIBONACCI SEQUENCES AND AN EXTENSION OF OSTROWSKl'S CONDITION 

\p'{n,r-\)\<H-^ X (V,'"tV!-
Ar1+2Jfc1+-+(r-l)ifcr_1 = n - r+ l K\' --Kr-\-

(12) 

From expression (7) we derive that the right-hand side of (12) is asymptotically equivalent to the 
expression 

(Hqf-r+l 

q-l+2q-2 + ~-+(r-l)q-r+l 

(see Theorem 3.2 of [9]). The conclusion follows from (10). D 

Condition (10) is not necessary for the convergence of a sequence (1), as is shown in the 
following example. 

Example 4J: Let {Vn}n>0 be a sequence (1), where r = 3 and a0 = 1 - ju, ax = fi - a, a2 = a with 
ju*0 and a * 0. Then a0 +ax +a2 = 1, bx = ju, and J2 = a, For example, if // = •£• and a - -2-10 10' 
we deduce that 2 0 = 1, 2X = ~, and X2 = ± are simple zeros of P(X). Thus, the sequence {Vn}n>0 

converges. Meanwhile, in this case we have H = j , and q 
Hq > 1. Other values of ft and a may give the same conclusion. 

~ _ lW5 is the solution of x2 = x +1, so 

5, CONCLUDING MEMAMKS 

Let us consider the following classical lemma (see, e.g., [5] and [10]). 

Lemma 5.1: Let R(X) = b0X* + blXa~l + *"+bs (bQj£Q) be a polynomial of real coefficients. 
Assume that the bj

 fs are not zero. Set 

M1(i?) = max|l,X 
s-\ 

;=0 

"y+i 

M3(R) = max 
Vi 

i/y 
; 1 < J < S , M4(R) = max< 

^5-1 
, 2 

7 - 1 
1 < J < 5 - 1 . 

Thus, |A| < Mj(R) (j = 1,2,3,4) for any zero X ofR(X). 

Condition (2) implies that P(X) = (X-T)Q(X), where Q(X) = b0Xr-l+blXr-2 + -+br_l 

with bk = Tfjl\ a j and bQ = 1. Thus, if a0 = 0, we have b0 = bh which implies that Mj(Q) > 1 for 
j = 2,3,4. In particular, if Mj(Q) < 1 (/ = 2,3,4), we deduce that aQ * 0, and ( Q is satisfied. 

Proposition 5.1: Let {^}n>0 be a sequence (1) whose coefficients are real numbers satisfying (2). 
Let Q(X) = b0Xr~l+hlXr~2-h-°-+br_h where bk = 2^"!^.. Assume that the bjs are not zero. 
Then, if Mj(Q) < 1 for some j = 2,3,4, the sequence {FJW>0 converges for any choice of initial 
conditions. 

The convergence of a sequence (1) has been studied in [3] and [4] for r = 2,3. Proposition 
5.1 extends Theorem 2 of [3] and Theorem 1 of [4] to r > 2. 
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Remark 5.1: Let {VJn>Q be a sequence (1) and set 

M = m a x { | 6 y r ; j = l , . . . , r -1} . 

Assume that the bjs are not zero. Then all results of Section 4 are still valid if we substitute M 
for 

H= max< \bx\9 

Also note that H < M4(Q), where 

M4(Q) = max< 
,Js-l 

? 

b2 

hi 

2 

, ...? 

*> 1 
Vi 1 

^ 2 

; 1 < J < 5 - 1 . 
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