EULERIAN POLYNOMIALS AND RELATED EXPLICIT FORMULAS

Ching-Hua Chang

Department of Mathematics, Hualien Teachers College, Hualien, Taiwan e-mail: chchang@sparc2.nhltc.edu.tw

Chung-Wei Ha

Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan e-mail: cwha@math.nthu.edu.tw (Submitted August 2000-Final Revision February 2001)

1. INTRODUCTION

For $\alpha \in \mathbb{C} \setminus \{1\}$ we write, as in [2],

$$\frac{1-\alpha}{e^t-\alpha}=\sum_{n=0}^{\infty}H_n(\alpha)\frac{t^n}{n!},$$

from which it follows that $H_n(\alpha)$ (n = 0, 1, ...) are uniquely determined by

$$H_0(\alpha) \equiv 1, \quad H_n(\alpha) = \frac{1}{\alpha - 1} \sum_{k=0}^{n-1} {n \choose k} H_k(\alpha) \quad (n \ge 1).$$
 (1)

The Eulerian polynomials $R_n(\alpha)$ (n = 0, 1, ...) are defined by $R_n(\alpha) = (\alpha - 1)^n H_n(\alpha)$ as Euler first discussed them in [4]. For $n \ge 1$, as is easily seen from (1), $R_n(\alpha)$ is a polynomial in α of degree n-1 with integer coefficients and was expressed by Euler in [4] as

$$R_n(\alpha) = \sum_{k=1}^n A_k^n \alpha^{k-1},$$
(2)

where the integers A_k^n $(1 \le k \le n)$ are known as Eulerian numbers (see also [3, p. 51]). Later, Frobenius [5] gave another expression for $R_n(\alpha)$ as

$$R_{n}(\alpha) = \sum_{k=1}^{n} k ! S_{k}^{n} (\alpha - 1)^{n-k}, \qquad (3)$$

where S_k^n $(1 \le k \le n)$ denote the Stirling numbers of the second kind (see also [3, p. 244]).

The object of this paper is to obtain one more expression for $R_n(\alpha)$ in terms of an array of integers C_k^n closely related to the central factorial numbers (see [6, §6.5]). By means of the new expression for $R_n(\alpha)$, we derive explicit formulas for Bernoulli and Euler numbers and others, and unify some known results, in terms of these C_k^n .

2. A NEW EXPRESSION FOR $R_n(\alpha)$

We define an array of integers C_k^n in the following way: for integers $r, k \ge 1$,

$$C_{k}^{n} = \begin{cases} \frac{1}{k} \sum_{j=1}^{k} (-1)^{k-j} \binom{2k}{k-j} j^{2r} & \text{if } n = 2r - 1, \\ k C_{k}^{2r-1} & \text{if } n = 2r. \end{cases}$$
(4)

Clearly, $C_1^{2r-1} = C_1^{2r} = 1$. We make the convention that $C_0^{2r-1} = C_0^{2r} = 0$.

2002]

399

These integers C_k^n are closely related to the central factorial numbers of the second kind T(n, k) defined as in [6, p. 212]. Indeed, for $r, k \ge 1$, $C_k^{2r-1} = (2k-1)!T(2r, 2k)$. Thus, it follows from the properties of T(2r, 2k) (see also [1, pp. 428-29]) that

$$C_k^{2r-1} = \begin{cases} (2r-1)! & \text{if } k = r, \\ 0 & \text{if } k \ge r+1. \end{cases}$$
(5)

Moreover, the second formula in the definition (4) together with

$$C_k^{2r+1} = 2(2k-1)C_{k-1}^{2r} + kC_k^{2r}$$
(6)

gives the recurrence for C_k^n . We may also derive (5) and (6) directly from the definition.

The new expression of $R_n(\alpha)$ given below contains the powers of α as in (2) and also that of $\alpha - 1$ as in (3). Moreover, the number of the terms in the summation is about half of that in (2) and (3).

Theorem 1: For an integer $r \ge 1$:

$$R_{2r-1}(\alpha) = \sum_{k=1}^{r} C_k^{2r-1} \alpha^{k-1} (\alpha - 1)^{2r-2k},$$
(7)

$$R_{2r}(\alpha) = (1+\alpha) \sum_{k=1}^{r} C_k^{2r} \alpha^{k-1} (\alpha-1)^{2r-2k}.$$
(8)

Proof: Clearly, from (1), $R_1(\alpha) = 1$ and $R_2(\alpha) = 1 + \alpha$. For the general case, the proof is by induction on $r \ge 1$ using the recurrence

$$R_{n+1}(\alpha) = (n+1)\alpha R_n(\alpha) + (1-\alpha)\frac{d}{d\alpha}(\alpha R_n(\alpha))$$
(9)

for $n \ge 1$ (see [2], [5]). If (7) is true, then by (9),

$$R_{2r}(\alpha) = (2r)\alpha R_{2r-1}(\alpha) + (1-\alpha)\frac{d}{d\alpha}(\alpha R_{2r-1}(\alpha))$$
$$= \sum_{k=1}^{r} k C_{k}^{2r-1}(1+\alpha)\alpha^{k-1}(\alpha-1)^{2r-2k},$$

which by (4) equals the right-hand side of (8). If (8) is true, then by (9) again,

$$\begin{aligned} R_{2r+1}(\alpha) &= (2r+1)\alpha R_{2r}(\alpha) + (1-\alpha)\frac{d}{d\alpha}(\alpha R_{2r}(\alpha)) \\ &= \sum_{k=1}^{r} C_{k}^{2r} \left\{ 2\alpha(2k+1) + k(\alpha-1)^{2} \right\} \alpha^{k-1}(\alpha-1)^{2r-2k} \\ &= C_{1}^{2r}(\alpha-1)^{2r} + C_{r}^{2r} 2(2r+1)\alpha^{r} + \sum_{k=2}^{r} \left\{ 2(2k-1)C_{k-1}^{2r} + kC_{k}^{2r} \right\} \alpha^{k-1}(\alpha-1)^{2r-2k+2}, \end{aligned}$$

which by (5) and (6) equals the right-hand side of (7) with r replaced by r+1. This completes the proof of the theorem.

Some classical formulas involving the Eulerian numbers have their counterparts in the integers C_k^n . Analogous to an identity of Worpitzky (see [3, p. 243]), we have the following theorem.

400

Theorem 2: For an integer $r \ge 1$:

$$x^{2r-1} = \sum_{k=1}^{r} C_k^{2r-1} \binom{x+k-1}{2k-1}.$$
 (10)

Proof: Let Δ be the difference operator defined by $\Delta f(x) = f(x+1) - f(x)$. Following an idea of Frobenius in [5], we have by a property of S_j^n (see [3, p. 207]) and (3)

$$x^{n} = \sum_{j=1}^{n} j! S_{j}^{n} {\binom{x}{j}} = \sum_{j=1}^{n} j! S_{j}^{n} \Delta^{n-j} {\binom{x}{n}} = R_{n} (I + \Delta) {\binom{x}{n}}.$$

Thus, by (7),

$$x^{2r-1} = \sum_{k=1}^{r} C_k^{2r-1} (I+\Delta)^{k-1} \Delta^{2r-2k} \binom{x}{2r-1} = \sum_{k=1}^{r} C_k^{2r-1} \binom{x+k-1}{2k-1}.$$

In connection with the Bernoulli polynomials $B_n(x)$ and the Bernoulli numbers $B_n = B_n(0)$ analogous to

$$\frac{1}{n}\{B_n(x)-B_n\} = \sum_{j=1}^{n-1} A_j^{n-1} \binom{x+j-1}{n},$$

we have the following theorem.

Theorem 3: For an integer $r \ge 1$:

$$\frac{1}{2r} \{ B_{2r}(x) - B_{2r} \} = \sum_{k=1}^{r} C_k^{2r-1} \binom{x+k-1}{2k}, \tag{11}$$

$$\frac{1}{2r+1}B_{2r+1}(x) = (2x-1)\sum_{k=1}^{r} \frac{1}{2k+1}C_k^{2r}\binom{x+k-1}{2k}.$$
(12)

Proof: Since both sides of (11) are polynomials in x, it suffices to assume that x equals an integer $m \ge 1$. Then it follows from (10) using formulas in [3, pp. 10 and 155] that

$$\frac{1}{2r}\{B_{2r}(m)-B_{2r}\}=\sum_{j=1}^{m-1}j^{2r-1}=\sum_{k=1}^{r}C_{k}^{2r-1}\sum_{j=1}^{m-1}\binom{k+j-1}{2k-1}=\sum_{k=1}^{r}C_{k}^{2r-1}\binom{m+k-1}{2k}.$$

Similarly,

$$\frac{1}{2r+1}B_{2r+1}(m) = \sum_{j=1}^{m-1} j^{2r} = \sum_{k=1}^{r} C_k^{2r} \sum_{j=1}^{m-1} \frac{j}{k} \binom{k+j-1}{2k-1}$$
$$= \sum_{k=1}^{r} C_k^{2r} \sum_{j=1}^{m-1} \left[\binom{k+j-1}{2k} + \binom{k+j}{2k} \right]$$
$$= \sum_{k=1}^{r} C_k^{2r} \left[\binom{m+k-1}{2k+1} + \binom{m+k}{2k+1} \right]$$
$$= \sum_{k=1}^{r} C_k^{2r} \frac{2m-1}{2k+1} \binom{m+k-1}{2k}.$$

As a simple and interesting consequence of Theorem 3, we derive some explicit formulas for Bernoulli numbers which may be compared with those in Theorems 5 and 6 below.

2002]

Theorem 4: For an integer $r \ge 1$:

$$B_{2r} = \sum_{k=1}^{r} (-1)^{k-1} \frac{(k-1)! \, k!}{(2k+1)!} C_k^{2r},\tag{13}$$

$$B_{2r+2} = 2\sum_{k=1}^{r} (-1)^k \frac{k!(k+1)!}{(2k+3)!} C_k^{2r}.$$
(14)

Proof: We obtain (13) by differentiating both sides of (12) and then evaluating at x = 0. Moreover, we have, by (6),

$$B_{2r+2} = \sum_{k=1}^{r+1} (-1)^{k-1} \frac{(k-1)! \, k!}{(2k+1)!} \, k \{ 2(2k-1)C_{k-1}^{2r} + kC_k^{2r} \}$$
$$= \sum_{k=1}^{r} (-1)^k \frac{k!(k+1)!}{(2k+3)!} \, 2\{(k+1)(2k+1) - k(2k+3)\}C_k^{2r},$$

from which (14) follows.

From the proof of Theorem 3 we have, in particular,

$$\sum_{j=1}^{m} j^{2r-1} = \sum_{k=1}^{r} C_k^{2r-1} \binom{m+k}{2k},$$

$$\sum_{j=1}^{m} j^{2r} = (2m+1) \sum_{k=1}^{r} \frac{1}{2k+1} C_k^{2r} \binom{m+k}{2k}.$$
(15)

We refer to [7] in which (13) and (15) have been given.

3. BERNOULLI AND EULER NUMBERS

We recall that

sec
$$t = \sum_{r=0}^{\infty} (-1)^r E_{2r} \frac{t^{2r}}{(2r)!}, \quad \tan t = \sum_{r=1}^{\infty} T_{2r-1} \frac{t^{2r-1}}{(2r-1)!}$$

where E_{2r} are known as the Euler numbers and T_{2r-1} as the tangent numbers. The Bernoulli numbers can be obtained by

$$B_{2r} = (-1)^{r-1} \frac{2r}{4^r (4^r - 1)} T_{2r-1}$$

Since

$$\sec t + \tan t = \frac{2e^{it}}{e^{2it} + 1} - i\frac{e^{2it} - 1}{e^{2it} + 1} = 1 + (1 + i)\sum_{n=1}^{\infty} H_n(i)\frac{(it)^n}{n!},$$

where $i = \sqrt{-1}$, it follows that, for $r \ge 1$,

$$E_{2r} = (1+i)H_{2r}(i), \tag{16}$$

$$T_{2r-1} = (-1)^r (1-i) H_{2r-1}(i) .$$
⁽¹⁷⁾

Moreover, it is easy to verify that

$$T_{2r-1} = (-1)^r 2^{2r-1} H_{2r-1}(-1) = (-1)^{r-1} R_{2r-1}(-1).$$
(18)

See also [2, p. 257] and [3, p. 259].

402

[NOV.

Theorem 5: For an integer $r \ge 1$:

$$T_{2r-1} = \sum_{k=1}^{r} (-1)^{r-k} \frac{1}{2^{k-1}} C_k^{2r-1},$$
(19)

$$T_{2r-1} = \sum_{k=1}^{r} (-1)^{r-k} 2^{2r-2k} C_k^{2r-1};$$
(20)

and

$$T_{2r+1} = \sum_{k=1}^{r} (-1)^{r-k} \frac{k+1}{2^{k-1}} C_k^{2r},$$
(21)

$$T_{2r+1} = \sum_{k=1}^{r} (-1)^{r-k} 2^{2r-2k+1} C_k^{2r}.$$
 (22)

Proof: We have, by (7) and (17),

$$T_{2r-1} = (-1)^r 2 \sum_{k=1}^r C_k^{2r-1} \frac{i^k}{(i-1)^{2k}},$$

from which (19) follows. Moreover, we have, by (6),

$$T_{2r+1} = \sum_{k=1}^{r+1} (-1)^{r-k+1} \frac{1}{2^{k-1}} \{ 2(2k-1)C_{k-1}^{2r} + kC_k^{2r} \}$$
$$= \sum_{k=1}^{r} (-1)^{r-k} \frac{1}{2^k} \{ 2(2k+1) - 2k \} C_k^{2r},$$

from which (21) follows. We obtain (20) and (22) similarly using (18) instead. *Theorem 6:* For an integer $r \ge 1$:

$$E_{2r} = \sum_{k=1}^{r} (-1)^k \frac{1}{2^{k-1}} C_k^{2r},$$
(23)

$$E_{2r+2} = \sum_{k=1}^{r} (-1)^{k-1} \frac{k^2 + 3k + 1}{2^{k-1}} C_k^{2r}.$$
 (24)

Proof: We have, by (8) and (16),

$$E_{2r} = 2\sum_{k=1}^{r} C_k^{2r} \frac{i^k}{(i-1)^{2k}},$$

from which (23) follows. Moreover, we have, by (6),

$$E_{2r+2} = \sum_{k=1}^{r+1} (-1)^k \frac{k}{2^{k-1}} \{ 2(2k-1)C_{k-1}^{2r} + kC_k^{2r} \}$$

= $\sum_{k=1}^r (-1)^{k-1} \frac{1}{2^{k-1}} \{ (k+1)(2k+1) - k^2 \} C_k^{2r},$

from which (24) follows.

The formulas (21) and (23) can be found in [3, p. 259] where no proofs are given. We refer to [1, pp. 479-80] for other explicit formulas for T_{2r-1} and E_{2r} .

2002]

403

ACKNOWLEDGMENT

The authors wish to thank the referee for bringing their attention to MR 2001b:11017 of the paper [7].

REFERENCES

- 1. P. L. Butzer, M. Schmidt, E. L. Stark, & L. Vogt. "Central Factorial Numbers: Their Main Properties and Some Applications." *Numer. Funct. Anal. Optimiz.* **10** (1989):419-88.
- 2. L. Carlitz. "Eulerian Numbers and Polynomials." Math. Magazine 32 (1959):247-60.
- 3. L. Comtet. Advanced Combinatorics. Dordrecht and Boston: Reidel, 1974.
- 4. L. Euler. Institutiones calculi differentialis. Vol. II. Petrograd, 1755.
- 5. G. Frobenius. "Über die Bernoullischen und die Eulerschen Polynome." Sitzungsberichte der Preussische Akademie der Wissenschaften (1910):809-47.
- 6. J. Riordan. Combinatorial Identities. New York: R. E. Krieger Publishing Co., 1979.
- 7. Y. K. Wang. "General Expressions for Sums of Equal Powers and Bernoulli Numbers." (In Chinese.) J. Guangxi Univ. (Nat. Sci. Ed.) 24 (1999):318-20.

AMS Classification Numbers: 05A19, 11B68

** ** **

Author and Title Index

The TITLE, AUTHOR, ELEMENTARY PROBLEMS, ADVANCED PROBLEMS, and KEY-WORD indices for Volumes 1-38.3 are now on The Fibonacci Web Page. Anyone wanting their own copies may request them from **Charlie Cook** at **The University of South Carolina, Sumter**, by e-mail at <**ccook@sc.edu>**. Copies will be sent by e-mail attachment. PLEASE INDICATE WORDPERFECT 6.1, MS WORD 97, or WORDPERFECT DOS 5.1.

[NOV.