FIBONACCI TREE IS CRITICALLY BALANCED-A NOTE*

Yasuichi Horibe

Dept. of Math. Inform. Sci., Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
(Submitted September 2000-Final Revision February 2001)

1. $\operatorname{INTRODUCTION}$

To continue a previous note [2] (also [3]) on the morphology of self-similar trees, we reconsider, as simple model trees (see [2] for motivations), the sequence of binary trees $S_{k}=S_{k}(a, b)$, $k=1,2, \ldots$, defined recursively for relatively prime integers a, b such that $1 \leq a \leq b: S_{1}, \ldots, S_{b}$ are just one-leaf trees, and, for $k \geq b+1$, the left subtree of S_{k} is given by S_{k-a} and the right by S_{k-b}. Put $c=\frac{b}{a}$. When $c=2$, we have $S_{k}(1,2)$, the Fibonacci tree (of order k).

Denote the number of leaves in S_{k} by $n_{k}=n_{k}(c)$ and write

$$
\left\{\begin{array}{l}
\lambda_{k}=\lambda_{k}(c)=\frac{n_{k-a}}{n_{k}}(k \geq b+1), \\
\lambda=\lambda(c)=\lim _{k \rightarrow \infty} \lambda_{k},
\end{array}\right.
$$

then $\lambda_{k}:\left(1-\lambda_{k}\right)$ may be considered as a left-to-right weight-proportion in S_{k}.
The average path length $L_{k}=L_{k}(c)$ (i.e., the average number of branchings along the path from the root to a leaf) of S_{k} is the sum of the lengths of all the paths from the root to leaves divided by n_{k}.

In Section 2 we show the following relation:

$$
G(c) H(c)=1,
$$

where

$$
\left\{\begin{array}{l}
G(c)=\lim _{k \rightarrow \infty} \frac{L_{k}}{\log n_{k}}, \\
H(c)=-\lambda \log \lambda-(1-\lambda) \log (1-\lambda) .
\end{array}\right.
$$

("log" is to the base 2 , while " \ln " is to the base e.)
That is, we show that the normalized $L_{k}, L_{k} / \log n_{k}$, converges and the limit equals $(H(c))^{-1}$, the inverse of the entropy of the distribution $\lambda, 1-\lambda$. Roughly, $G(c)$ and $H(c)$ express the asymptotic growth and breadth indices, respectively, of the tree.

We will then observe in Section 3 some simple balance properties of S_{k} and show that the c maximizing $G(c)$ but maintaining S_{k} balanced for every k is equal to 2 .

2. A LIMITING RELATION

The following lemma was implicitly shown in [2] and will be used in the sequel.

Lemma 1:

(a) $\lambda^{b}=(1-\lambda)^{a}$;
(b) $\lambda=\lambda(c)(1 \leq c)$ is less than 1 and strictly monotone increasing, and $\lambda(1)=\frac{1}{2}, \lambda(2)=\frac{\sqrt{5}-1}{2}$;

[^0](c) $\frac{1}{k} \log n_{k} \rightarrow \frac{1}{a}(-\log \lambda)$ as $k \rightarrow \infty$;
(d) $\left|\lambda_{k}-\lambda\right| \rightarrow 0$ exponentially fast as $k \rightarrow \infty$.

Theorem 1: $G(c) H(c)=1$.
Proof: It is easy to see that the recursive structure of S_{k} implies

$$
\begin{equation*}
L_{k}=\lambda_{k} L_{k-a}+\left(1-\lambda_{k}\right) L_{k-b}+1(k \geq b+1) \tag{1}
\end{equation*}
$$

($L_{1}=\cdots=L_{b}=0$), which we are going to compare with the following equation with constant coefficients:

$$
\begin{equation*}
x_{k}=\lambda x_{k-a}+(1-\lambda) x_{k-b}+1(k \geq b+1) \tag{2}
\end{equation*}
$$

($x_{1}=\cdots=x_{b}=0$).
Remark: Kapoor and Reingold [4] treated, in a different way, a general recurrence, including (1), derived from the binary trees with costs a and b on the left and right branches.

The characteristic equation $\lambda t^{-a}+(1-\lambda) t^{-b}=1$ of the homogeneous

$$
\begin{equation*}
y_{k}=\lambda y_{k-a}+(1-\lambda) y_{k-b} \tag{3}
\end{equation*}
$$

clearly has root 1 , and it can be shown that $|\alpha|<1$ for every other root α. Therefore, the general solution of (3) is given by $y_{k}=C_{1}+\varepsilon_{k}$, where C_{1} is a constant and $\varepsilon_{k} \rightarrow 0(k \rightarrow \infty)$.

As a particular solution of (2), we have

$$
x_{k}=\frac{(-\log \lambda)}{a H(c)} k \quad(k \geq 1)
$$

In fact, the right-hand side of (2) then becomes

$$
\begin{aligned}
& \lambda \frac{(-\log \lambda)}{a H(c)}(k-a)+(1-\lambda) \frac{(-\log \lambda)}{a H(c)}(k-b)+1 \\
= & \frac{(-\log \lambda)}{a H(c)} k+\frac{1}{a H(c)}(a \lambda \log \lambda+b(1-\lambda) \log \lambda-a \lambda \log \lambda-a(1-\lambda) \log (1-\lambda)) \\
= & \frac{(-\log \lambda)}{a H(c)} k+\frac{1-\lambda}{a H(c)} \log \left\{\frac{\lambda^{b}}{(1-\lambda)^{a}}\right\}=\frac{(-\log \lambda)}{a H(c)} k \quad[\text { by Lemma 1(a)] } \\
= & x_{k} .
\end{aligned}
$$

The solution of (2) is therefore given by

$$
\begin{equation*}
x_{k}=\frac{(-\log \lambda)}{a H(c)} k+C_{1}+\varepsilon_{k}, \tag{4}
\end{equation*}
$$

which we regard as the solution satisfying the initial condition $x_{1}=\cdots=x_{k}=0$.
Subtract (2) from (1) to get

$$
L_{k}-x_{k}=\lambda_{k}\left(L_{k-a}-x_{k-a}\right)+\left(1-\lambda_{k}\right)\left(L_{k-b}-x_{k-b}\right)+\left(\lambda_{k}-\lambda\right)\left(x_{k-a}-x_{k-b}\right),
$$

then

$$
\begin{equation*}
\left|L_{k}-x_{k}\right| \leq \lambda_{k}\left|L_{k-a}-x_{k-a}\right|+\left(1-\lambda_{k}\right)\left|L_{k-b}-x_{k-b}\right|+C_{2}\left|\lambda_{k}-\lambda\right|, \tag{5}
\end{equation*}
$$

since we can write $\left|x_{k-a}-x_{k-b}\right| \leq C_{2}$ from (4).

Now we prove by induction on k that

$$
\begin{equation*}
\left|L_{k}-x_{k}\right| \leq C_{3} \ln k \quad(k \geq 1) \tag{6}
\end{equation*}
$$

for some constant C_{3}. Trivially true for $k=1, \ldots, b$, since $L_{k}=x_{k}=0$ for those k. Suppose $k \geq$ $b+1$, then $\frac{a}{k} \leq \frac{b}{k}<1$. By the induction hypothesis, (5), and the inequality $\ln (1-x) \leq x$, we have

$$
\begin{aligned}
& \left|L_{k}-x_{k}\right| \leq C_{3} \lambda_{k} \ln (k-a)+C_{3}\left(1-\lambda_{k}\right) \ln (k-b)+C_{2}\left|\lambda_{k}-\lambda\right| \\
& =C_{3}\left\{\lambda_{k}\left(\ln k+\ln \left(1-\frac{a}{k}\right)\right)+\left(1-\lambda_{k}\right)\left(\ln k+\ln \left(1-\frac{b}{k}\right)\right)\right\}+C_{2}\left|\lambda_{k}-\lambda\right| \\
& \leq C_{3}\left\{\ln k-\frac{1}{k}\left(a \lambda_{k}+b\left(1-\lambda_{k}\right)\right)\right\}+C_{2}\left|\lambda_{k}-\lambda\right| \\
& \leq C_{3} \ln k-\frac{a C_{3}}{k}+C_{2}\left|\lambda_{k}-\lambda\right| \leq C_{3} \ln k,
\end{aligned}
$$

where the last inequality holds because, by Lemma 1(d), we could have chosen C_{3} large enough so that $-\frac{a C_{3}}{k}+C_{2}\left|\lambda_{k}-\lambda\right| \leq 0$ for $k \geq b+1$.

From (4) and (6), we obtain

$$
\left|L_{k}-\frac{(-\log \lambda)}{a H(c)} k-C_{1}-\varepsilon_{k}\right| \leq C_{3} \ln k ;
$$

hence,

$$
\left|\frac{L_{k}}{\log n_{k}}-\frac{1}{H(c)} \frac{(-\log \lambda)}{a} \frac{k}{\log n_{k}}-\frac{C_{1}+\varepsilon_{k}}{\log n_{k}}\right| \leq C_{3}\left(\frac{k}{\log n_{k}}\right)\left(\frac{\ln k}{k}\right) .
$$

Therefore, $\frac{L_{k}}{\log n_{k}} \rightarrow \frac{1}{H(c)}(k \rightarrow \infty)$ by Lemma $1(\mathrm{c})$.

3. CRITICAL BALANCE

A most pleasing, though rather vague, concept concerning the form of a tree might be the concept of being "balanced as a whole."

One natural definition of "balancedness" (let us call it "w-balanced") of the trees S_{k} is:
$\left\{S_{k}\right\}$ is said to be w-balanced if $n_{k} \geq n_{k-a}+n_{k-2 a}$ for every $k \geq b+a+1$ (see [2]).
(Remark: $b+a+1$ is the minimum k such that $n_{k} \geq 3$.)
Note that the definition takes this form to refer to the sequence $\left\{S_{k}\right\}$ not to individual S_{k} for reason of compactness. Also note that the definition may be viewed as stemming from the fact that the condition $n_{k} \geq n_{k-a}+n_{k-2 a}$ can be written as

$$
n_{k-a}-\left(n_{k}-n_{k-a}\right) \leq\left(n_{k}-n_{k-2 a}\right)-n_{k-2 a},
$$

meaning that the division $n_{k-a}:\left(n_{k}-n_{k-a}\right)$ of n_{k} is balanced better than or equally to the division $n_{k-2 a}:\left(n_{k}-n_{k-2 a}\right)$.

Another pretty concept of balancedness of a binary tree is due to Adelson-Velskii and Landis [1]. Denote the height of S_{k} by $h_{k}=h_{k}(c)$, then their definition adapted to S_{k} is:
$\left\{S_{k}\right\}$ is said to be h-balanced if $h_{k-a}-h_{k-b} \leq 1$ for every $k \geq b+a+1$.

We know from [2] that $h_{k}=\left\lceil\frac{k-b}{a}\right\rceil(k \geq b)$.
It should be mentioned here that, according to Nievergelt and Wong [5], $\left\{S_{k}\right\}$ may be called " α-balanced" $\left(0<\alpha \leq \frac{1}{2}\right)$ if $\frac{n_{k-b}}{n_{k}} \geq \alpha$ holds for every $k \geq b+a+1$ and they showed that

$$
\left(\frac{L_{k}}{\log n_{k}}\right)(-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)) \leq 1
$$

for α-balanced $\left\{S_{k}\right\}$ [in place of $\left.G(c) H(c)=1\right]$.

Lemma 2:

(a) $\left\{S_{k}\right\}$ is w-balanced if and only if $c \leq 2$.
(b) $\left\{S_{k}\right\}$ is h-balanced if and only if $c \leq 2$.
(c) $n_{k}=n_{k-b}+n_{k-2 a}$ for every $k \geq b+a+1$ if and only if $c=2$.
(d) $h_{k-a}-h_{k-b}=1$ for every $k \geq b+a+1$ if and only if $c=2$.

Proof: The proof is simple, comprising the following pieces $1 \sim 5$.

1. We first note that $n_{k}=n_{k-a}+n_{k-b}$, and hence the "if" part of (c) is obvious.
2. There are (infinitely) many i such that $n_{i}<n_{i+1}$. So, if $c<2$ (i.e., $b<2 a$), we have $n_{k-2 a}<n_{k-b}$ for (infinitely) many k, and if $c>2$ (i.e., $b>2 a$), we have $n_{k-2 a}>n_{k-b}$ for (infinitely) many k. This proves the "only if" parts of (a) and (c). An alternative proof is: Divide both sides of $n_{k} \geq n_{k-a}+n_{k-2 a}$ by n_{k} to obtain

$$
1 \geq\left(\frac{n_{k-a}}{n_{k}}\right)+\left(\frac{n_{k-a}}{n_{k}}\right)\left(\frac{n_{k-2 a}}{n_{k-a}}\right) .
$$

Let $k \rightarrow \infty$, then $1 \geq \lambda(c)+(\lambda(c))^{2}$. Therefore, we deduce $\lambda(c) \leq \frac{\sqrt{5}-1}{2}$, and using Lemma 1 (b) finishes the proof of those parts.
3. Proof of the "if" part of (a). Suppose $k \geq b+a+1$. Since $b \leq 2 a$ by $c \leq 2$, we have $n_{k-b} \geq n_{k-2 a}$. Hence, $\left\{S_{k}\right\}$ is w-balanced.
4. Suppose $c<2$. Then $b \leq 2 a-1$. Take $k=b+i a(i \geq 2)$ to see that

$$
\begin{aligned}
0 & \leq h_{k-a}-h_{k-b}=\left\lceil\frac{(k-a)-b}{a}\right\rceil-\left\lceil\frac{(k-b)-b}{a}\right\rceil=(i-1)-\left\lceil\frac{i a-b}{a}\right\rceil \\
& \leq(i-1)-\left\lceil\frac{i a-(2 a-1)}{a}\right\rceil=(i-1)-(i-2)-\left\lceil\frac{1}{a}\right\rceil=0 .
\end{aligned}
$$

That is, $h_{k-a}-h_{k-b}=0$ holds for (infinitely) many k.
Suppose $c>2$. Then $b \geq 2 a+1$. In this case, taking $k=b+i a+1(i \geq 2)$ leads us to $h_{k-a}-h_{k-b}=i-(i-2)=2$. That is, $h_{k-a}-h_{k-b}=2$ holds for (infinitely) many k.

The two remarks above prove the "only if" parts of (b) and (d).
5. Proof of the "if" parts of (b) and (d). Suppose $b+a+1 \leq k \leq b+2 a$. Then, since $b+1 \leq$ $k-a \leq b+a$, we have $h_{k-a}-h_{k-b}(=1-0$ or $1-1) \leq 1$. (Furthermore, if $c=2$, then $k-b \leq b$ and $h_{k-a}-h_{k-b}=1-0=1$.)

Suppose next that $k \geq b+2 a+1$. From $b \leq 2 a$, we have

$$
\frac{(k-a)-b}{a} \leq \frac{(k-b)-b}{a}+1,
$$

and hence, by noting that $k-b \geq 2 a+1 \geq b+1$, we have $h_{k-a} \leq h_{k-b}+1$. Therefore, $\left\{S_{k}\right\}$ is hbalanced. (Furthermore, if $c=2$, then $h_{k-a}=h_{k-b}+1$.)

The (asymptotic) average growth function $G(c)$ is strictly monotone increasing because the entropy $H(c)$ is strictly monotone decreasing. Therefore, the c maximizing $G(c)$ while keeping the S_{k} balanced for every k equals 2 .

SUMMARY

Summarizing, we may say that the Fibonacci tree is critically balanced, and in this sense the Golden-cut point $\lambda(2)$ might be interpreted as the critical balancing point.

REFERENCES

1. G. M. Adelson-Velskii \& E. M. Landis. "An Algorithm for the Organization of Information." Soviet Math. (Doklady) 3 (1962):1259-63.
2. Y. Horibe. "Growing a Self-Similar Tree." In Applications of Fibonacci Numbers 7:177-84. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998.
3. Y. Horibe. "On an Asymptotic Maximality of the Fibonacci Tree." In Applications of Fibonacci Numbers 8:195-200. Ed. F. T. Howard. Dordrecht: Kluwer, 1999.
4. S. Kapoor \& E. M. Reingold. "Optimum Lopsided Binary Trees." J. Assoc. Comput. Mach. 36 (1989):573-90.
5. J. Nievergelt \& C. K. Wong. "Upper Bounds for the Total Path Length of Binary Trees." J. Assoc. Comput. Mach. 20 (1973):1-6.
AMS Classification Numbers: 05C05, 11B39, 92C15
$\% \% \%$

[^0]: * This paper was presented at the Ninth International Conference on Fibonacci Numbers and Their Applications, July 17-22, 2000, Institut Supérieur de Technologie, Luxembourg.

