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1. INTRODUCTION 

To continue a previous note [2] (also [3]) on the morphology of self-similar trees, we recon-
sider, as simple model trees (see [2] for motivations), the sequence of binary trees Sk = Sk(a, b), 
k = 1,2,..., defined recursively for relatively prime integers a, b such that l<a<b:Sl9...,Sb are 
just one-leaf trees, and, for k > b +1, the left subtree of Sk is given by Sk_a and the right by Sk__b. 
Put c = ™. When c = 2, we have 5^(1,2), the Fibonacci tree (of order k). 

Denote the number of leaves in Sk by nk = nk{c) and write 

< 
2 = 1(c) = Mm Xk, 

then Xk : (l~Ak) may be considered as a left-to-right weight-proportion in Sk. 
The average path length Lk = Lk(c) (i.e., the average number of branchings along the path 

from the root to a leaf) of Sk is the sum of the lengths of all the paths from the root to leaves 
divided by nk. 

In Section 2 we show the following relation: 
G(c)H(c) = l, 

where 

[H(c) - - 2 log 2 ~ (1 - 2) log(l - X). 

("log" is to the base 2, while "In11 is to the base e.) 

That is, we show that the normalized Lk, Lk /log%, converges and the limit equals (H(c))~l, the 
inverse of the entropy of the distribution 2 , 1 - 2 . Roughly, G(c) and H(C)L express the asymp-
totic growth and breadth indices, respectively, of the tree. 

We will then observe in Section 3 some simple balance properties of Sk and show that the c 
maximizing G(c) but maintaining Sk balanced for every k is equal to 2. 

2. A LIMITING RELATION 

The following lemma was implicitly shown in [2] and will be used in the sequel. 

Lemmm 1: 
(a) tf = (l-X)a; 
(b) X = X(c) (1 < c) is less than 1 and strictly monotone increasing, and 2(1) = j - , 2(2) = -̂ -f̂ ; 

* This paper was presented at the Ninth International Conference on Fibonacci Numbers and Their Applications, 
July 17-22, 2000, Institut Sup6rieur de Technologic, Luxembourg. 
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(c) ^logwfc->^-(-logA)as*->oo; 
(d) \Xk - X | -» 0 exponentially fast as k -> oo. 

Theorem 1: G(c)H(c) = l. 

Proof: It is easy to see that the recursive structure of Sk implies 

Lk = XkLk_a + (1 - Afc)4_6 +1 (k > b +1) (1) 

(Ll = >- = Lb = 0), which we are going to compare with the following equation with constant 
coefficients: 

xk = Xxk_a+(l-X)xk_b + l (k>b + l) (2) 
(*i = - = *& = 0). 

Remark: Kapoor and Reingold [4] treated, in a different way, a general recurrence, including (1), 
derived from the binary trees with costs a and b on the left and right branches. 

The characteristic equation Xt~a + (l~X)t~b = 1 of the homogeneous 

yk = ^yk-a+0-^)^-6 (3) 
clearly has root 1, and it can be shown that \a\ < 1 for every other root a. Therefore, the general 
solution of (3) is given by yk = Q + sk, where Q is a constant and sk -» 0 (k -» oo). 

As a particular solution of (2), we have 

**=lz£rr* (*>i). 
* aH(c) 

In fact, the right-hand side of (2) then becomes 
aH(c) aH(c) 

= xk. 

The solution of (2) is therefore given by 

k aH(c) l k v ; 

which we regard as the solution satisfying the initial condition xx = • • • = xk = 0. 
Subtract (2) from (1) to get 

^k~Xk~ ^ki^k-a ~ Xk-a) + 0 ~ ^k)(h-b ~ Xk-h) + (̂ jfc ~ ^)(%-a ~ X£-fc)> 

then 

l 4 -^ l^^l4 -a -* t -a l+0-^) l^-Xwl+Ci l^-^ l , (5) 
since we can write \xk_a - xk„b \ < C2 from (4). 
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Now we prove by induction on k that 
\Lk~xk\<C3lnk (k>l) (6) 

for some constant C3. Trivially true for k = 1, ...,b, since Lk-xk = 0 for those k. Suppose k > 
b + \, then f < £ < 1. By the induction hypothesis, (5), and the inequality ln(l - x) < x, we have 

\Lk- xk\<C3Xk\n(k ~a) + C3{\- Xk)\n(k -b) + C2\Xk- X\ 

<C3|ln k-j(aAk+b(l-Ak))\ + C2\Ak-A\ 

<C3lnk~=^ + C2\Ak-A\<C3lnk, 

where the last inequality holds because, by Lemma 1(d), we could have chosen C3 large enough 
so that -^- + G2\Ak-A\<0£or k>b + l. 

From (4) and (6), we obtain 

(-log A), r 
h aH(c) r <C3ln^; 

hence, 

U 1 (-log A) k Cx + sk 
lognk H(c) a lognk lognk 

Therefore, -^~—> j ^ (k -> oo) by Lemma 1(c). D 

<C, 
lOg/l; * / ( " > 

3. CMTICAL BALANCE 
A most pleasing, though rather vague, concept concerning the form of a tree might be the 

concept of being "balanced as a whole." 
One natural definition of "balancedness" (let us call it V-balanced") of the trees Sk is: 

{Sk} is said to be w-balanced if nk > nk_a + nk_2a for every k > b + a +1 (see [2]). 
(Remark: b+a + l is the minimum k such that nk>3.) 

Note that the definition takes this form to refer to the sequence {Sk} not to individual Sk for 
reason of compactness. Also note that the definition may be viewed as stemming from the fact 
that the condition nk > nk_a +nk_2a can be written as 

meaning that the division nk_a : (nk -nk_a) of % is balanced better than or equally to the division 
W * - 2 « : ( " * - H * - 2 * ) -

Another pretty concept of balancedness of a binary tree is due to Adelson-Velskii and Landis 
[1]. Denote the height of Sk by hk = hk(c)9 then their definition adapted to 5^ is: 

{5^} is said to be h-halanced if hk_a - hk_b < 1 for every k > b+a +1. 
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We know from [2] that hk = \*=p\ (k > h). 
It should be mentioned here that, according to Nievergelt and Wong [5], {Sk} may be called 

"a-balanced" (0 < a < j) if ~ ~ > a holds for every k > b+a +1 and they showed that 

(-a log a - (1 - a) log(l - a)) < 1 
log/% 

for a-balanced {Sk} [in place of G(c)H(c) = 1]. 

Lemma 2: 
(a) {Sk} is w-balanced if and only if c < 2. 
(S) {5^} is h-balanced if and only if c < 2. 
(c) nk = nk_b +nk__2a f°r every k > b + a +1 if and only if c = 2. 
f<9 hk_a-hk_b = 1 for every A > b + a +1 if and only if c = 2. 

Proof; The proof is simple, comprising the following pieces 1-5. 
1. We first note that % = nk_a +nk__b, and hence the "if" part of (c) is obvious. 
2. There are (infinitely) many i such that nf <ni+l. So, if c<2 (i.e., b<2a), we have 

wik-2<i <nk-b f°r (infinitely) many A:, and if c>2 (i.e., b> 2a), we have nk__2a >nk_b for (infinitely) 
many k. This proves the "only if" parts of (a) and (c). An alternative proof is: Divide both sides 
of nk > nk__a + nk^2a by nk to obtain 

1> lk~a 
«, + 
't J 

'k-a lk-2a 
fin lk~a 

Let k->ooy then 1> A(c) + (A(c))2. Therefore, we deduce ^(c)<-^^ , and using Lemma 1(b) 
finishes the proof of those parts. 

3. Proof of the "if" part of (a). Suppose k>b+a + l. Since b<2a by c < 2 , we have 
Hence, {Sk} is w»balanced. 

Suppose c < 2. Then b<2a-l. Take k = b+ia (i > 2) to see that 
nk_b>mk_2a. 

®<hkma-hk^b = '(k-a)-b' -(k-b)-b' 

<(i f-l)-p ia-(2a-l)' 
a 

= ( j - l ) - ( / - 2 ) -

( i - l ) -

0. 

'ia-b' 

That is, / i ^ - hk_b = 0 holds for (infinitely) many i. 
Suppose c > 2 . Then b>2a +1. In this case, taking k = b+/a +1 (i>2) leads us to 

K-a ~ ̂ *-& = ' - 0' - 2) = 2. That is, /k_fl - 1%^ = 2 holds for (infinitely) many k. 
The two remarks above prove the "only if" parts of (b) and (d). 
5. Proof of the M if11 parts of (b) and (d). Suppose b + a + l<k <b + 2a. Then, since b +1 < 

k-a<b^a, we have hk^G-hk^b (=1-0 or 1-1)^1. (Furthermore, if c = 2, then k-b<b and 

Suppose next that k > b + 2a +1. From b < 2a, we have 
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(k-a)-b ^(k-b)-b , , 
a a ' 

and hence, by noting that k-b^2a + l>b + l, we have hk„a<hk_b + l. Therefore, {Sk} is h-
balanced. (Furthermore, if c = 2, then hk_a - hk_b +1.) D 

The (asymptotic) average growth function G(c) is strictly monotone increasing because the 
entropy H(c) is strictly monotone decreasing. Therefore, the c maximizing G(c) while keeping 
the Sk balanced for every k equals 2. 

SUMMARY 

Summarizing, we may say that the Fibonacci tree is critically balanced, and in this sense the 
Golden-cut point 2(2) might be interpreted as the critical balancing point. 
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