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1. INTRODUCTION

To continue a previous note [2] (also [3]) on the morphology of self-similar trees, we recon-
sider, as simple model trees (see [2] for motivations), the sequence of binary trees S, = S, (a, b),
k=1,2,..., defined recursively for relatively prime integers a, b such that 1<a<b:S§,,..., S, are
just one-leaf trees, and, for £ > b +1, the left subtree of S, is given by S,_, and the right by S,_,.
Put c=£. When ¢ =2, we have S, (1, 2), the Fibonacci tree (of order k).

Denote the number of leaves in S, by 7, =n,(c) and write

Ay =ﬂk(c):”—f;;i (k2b+1),
A=A(c) = lim 4,
k-
then A, : (1-4,) may be considered as a left-to-right weight-proportion in ..

The average path length L, = L,(c) (i.e., the average number of branchings along the path
from the root to a leaf) of S is the sum of the lengths of all the paths from the root to leaves

divided by n, .
In Section 2 we show the following relation:
G(H(©)=1,
where

0

. L
G(C) = ,ll_l;l'l logkn,‘ 4
H(c)=-AlogA—-(1-A)log(1-A).

("log" is to the base 2, while "In" is to the base e.)

That is, we show that the normalized L, L, /logn, , converges and the limit equals (H(c))™, the
inverse of the entropy of the distribution A,1-A4. Roughly, G(c) and H(c)k express the asymp-
totic growth and breadth indices, respectively, of the tree.

We will then observe in Section 3 some simple balance properties of S, and show that the ¢
maximizing G(c) but maintaining S, balanced for every £ is equal to 2.

2. A LIMITING RELATION
The following lemma was implicitly shown in [2] and will be used in the sequel.

Lemma 1:
@ 2=(1-27;
(b)) A=A(c) (1=<c) is less than 1 and strictly monotone increasing, and A(1) =1, A(2) = @;

* This paper was presented at the Ninth International Conference on Fibonacci Numbers and Their Applications,
July 17-22, 2000, Institut Supérieur de Technologie, Luxembourg.
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(©) +logn, —>L(-logA)ask — o;
(d) |4, —A|— 0 exponentially fast as £ — co.
Theorem 1: G(c)H(c)=1.

Proof: 1t is easy to see that the recursive structure of S, implies

L =0L_,+(A-A)L,_,+1 (k=2b+1) m
(Ly=+--=L,=0), which we are going to compare with the following equation with constant
coefficients:
X, =Ax_,+(1-A)x_,+1 (k2b+1) 2)
(q="=x,=0).

Remark: Kapoor and Reingold [4] treated, in a different way, a general recurrence, including (1),
derived from the binary trees with costs a and b on the left and right branches.

The characteristic equation A#° +(1— A)¢™® =1 of the homogeneous
Vi = Wiea + A=Yy €)
clearly has root 1, and it can be shown that |a| < 1 for every other root a. Therefore, the general

solution of (3) is given by y, = C, +¢&,, where C, is a constant and &, — 0 (k — ©).
As a particular solution of (2), we have

_Clogd) sy,

%= "5H ()
In fact, the right-hand side of (2) then becomes
2 loe ) }%g;”)(k a)+(1— 1) Clogd) Ef?(k—b)ﬂ
_(ag(gcf)m H()(axllogl+b(l A)log A—-ailog A —a(l- A)log(1- 1))
N CRAr )1°g{(1 —lbﬂ)“} -Gy Loy Lemma 1)
- x,

The solution of (2) is therefore given by

(=logd)
= +
X 2H(0) k+Ci+¢, @)
which we regard as the solution satisfying the initial condition x; =---=x, =0.

Subtract (2) from (1) to get
L —x, = L (L= %) (A= A )Ly — %) + (A — D), — %, p),
then
|Li =% | < A | Ly = X | + (A= A | Loy — X | + G| A — A, )

since we can write |x,_, —x,_,| < C, from (4).
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Now we prove by induction on & that
|L —x, | <Cylnk (k=1) (6)
for some constant C;. Trivially true for k=1,..., b, since I, = x, = 0 for those . Suppose £ 2

b+1, then £ <£ <1. By the induction hypothesis, (5), and the inequality In{1-x) < x, we have

|y — x| < Cydy In(k —a)+ Gy (1= A) In(k - B) + Cy |4, — A|

:C3{/1k (lnk+ln (1—~%D+(1—/1k)(lnk+1n(1~%))}+€2|/1k ~ 1

<G, {lnk—%(aﬂk +b(1—/1k))}+C2|/’tk Y

%%+C2Mk—ﬂ;sc3lnk,

where the last inequality holds because, by Lemma 1(d), we could have chosen C, large enough
so that — 22+ C, |4, —~A| <0 for k 2b+1.
From (4) and (6), we obtain

<Cylnk-

<Glnk;

k Ink
<G (]lognk )(T)

hence,

L, 1 (=logh) k Ctg,
logn, H{c) a logn, logn,

Therefore, —%— — -~ (k — ) by Lemma 1(c). O
logn, H{c)

3. CRITICAL BALANCE

A most pleasing, though rather vague, concept concerning the form of a tree might be the
concept of being "balanced as a whole."
One natural definition of "balancedness” (let us call it "w-balanced") of the trees S, is:

{S,} is said to be w-balanced if m, > m;_, +n,_,, forevery k 2b+a b1 (see [2]).
(Remark: b-+a-+1 is the minimum & such that n, 2 3.)

Note that the definition takes this form to refer to the sequence {S,} not to individual S, for
reason of compactness. Also note that the definition may be viewed as stemming from the fact
that the condition n, 2 n,_, +n,_,, can be written as

g = =) S (M =M 00) =T
meaning that the division n,__ : (1, —1,_,) of n, is balanced better than or equally to the division

o (n’k - nk—Qa)'
Another pretty concept of balancedness of a binary tree is due to Adelson-Velskii and Landis
[1]. Denote the height of S, by %, = &,(c}, then their definition adapted to §,, is:

{8,} is said to be h-balanced if h,_,—h,_, < 1forevery k 2b+a+1.
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We know from [2] that A, =[%£2] (k 2 b).
It should be mentioned here that, according to Nievergelt and Wong [5], {S,} may be called
"a-balanced" (0 < @ <3) if %£ > o holds for every k >b+a +1 and they showed that

( Ly )(—aloga—(l—a)log(l—a))s1

logn,
for a-balanced {S,} [in place of G(c)H(c)=1].
Lemma 2:
(a) {S,} is w-balanced if and only if c<2.
(B) {S,} is h-balanced if and only if ¢ < 2.
(¢) m,=n,_,+n,_,, forevery k>b+a+1ifand onlyif c=2.
(d h,_,—h,_,=1forevery k2b+a+1ifand onlyif c=2.

Proof: The proof is simple, comprising the following pieces 1~5.

1. We first note that n, =n,_, +n,_,, and hence the "if" part of (c) is obvious.

2. There are (infinitely) many i such that n,<n,,. So, if c<2 (i.e, b<2a), we have
n,_y, <m,_, for (infinitely) many £, and if ¢ >2 (i.e., b > 2a), we have n,_,, >n,_, for (infinitely)
many k. This proves the "only if" parts of (a) and (c). An alternative proof is: Divide both sides
of m, 2n,_, +n,_,, by n, to obtain

1> (nk—a )+ (nk—a )(nk-Za )
\m m Thea)
Let k — oo, then 1> A(c)+(A(c))?. Therefore, we deduce A(c) < @, and using Lemma 1(b)

finishes the proof of those parts.

3. Proof of the "if" part of (a). Suppose k>b+a+1. Since b<2a by c<2, we have
n,_, 2n,_,,. Hence, {S,} is w-balanced.

4. Suppose c<2. Then b<2a-1. Take k =b+ia (i >2) to see that
k—a)-b] [(k=0)-b7_,. ja—b
0.<_hk_a~hk_b:[( z) ]_[( a) 1:(,_1)_[12 ]
. ja—(2a-1 . . 1
S(1—1)—{%)]=(z—1)~(z—2)_[51:0,

That is, A,_, - h_, = 0 holds for (infinitely) many £.
Suppose ¢>2. Then b>2a+1. In this case, taking k =b+ia+1 (i 22) leads us to
h,_,—h,_,=i—-(—-2)=2. Thatis, h,_,—h,_, =2 holds for (infinitely) many £.

The two remarks above prove the "only if" parts of (b) and (d).

5. Proof of the "if" parts of (b) and (d). Suppose b+a+1<k <b+2a. Then, since b+1<
k-a<b+a,wehave h,_,~h,_, (=1-0 or 1-1)<1. (Furthermore, if ¢c=2, then ¥ —b <5 and
By y—hy ,=1-0=1)

Suppose next that £ > b5 +2a+1. From b <2a, we have
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(k—a)-b < {(k—Db)-b 1,
a a

and hence, by noting that k—b2>2a+12b+1, we have hy,_,<h,_,+1. Therefore, {S,} is h-

balanced. (Furthermore, if c=2, then #,_,=h,_,+1.) O

The (asymptotic) average growth function G{c) is strictly monotone increasing because the
entropy H(c) is strictly monotone decreasing. Therefore, the ¢ maximizing G(c) while keeping
the §, balanced for every £ equals 2.

SUMMARY

Summarizing, we may say that the Fibonacci tree is critically balanced, and in this sense the
Golden-cut point A(2) might be interpreted as the critical balancing point.

REFERENCES

1. G. M. Adelson-Velskii & E. M. Landis. "An Algorithm for the Organization of Information."
Soviet Math. (Doklady) 3 (1962):1259-63.

2. Y. Horibe. "Growing a Self-Similar Tree." In Applications of Fibonacci Numbers 7:177-84.
Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998.

3. Y. Horibe. "On an Asymptotic Maximality of the Fibonacci Tree." In Applications of Fibo-
nacci Numbers 8:195-200. Ed. F. T. Howard. Dordrecht: Kluwer, 1999,

4. S.Kapoor & E. M. Reingold. "Optimum Lopsided Binary Trees." J. Assoc. Comput. Mach.
36 (1989):573-90.

5. J. Nievergelt & C. K. Wong. "Upper Bounds for the Total Path Length of Binary Trees." J.
Assoc. Comput. Mach. 20 (1973):1-6.

AMS Classification Numbers: 05C05, 11B39, 92C15

s B0 o2
o o6 &P

2002} 445



