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1. INTRODUCTION 

Kappraff [2] described the panels In the pavement of the Reading Room of the Library on the 
second floor of the San Lorenzo church complex in Florence. Work on the library was begun in 
1523 by Pope Clement VII, Giulio di Medici, as a monument to his uncle, Lorenzo di Medici. 
The library was one of the few successes of Clement's disastrous reign, characterized as it was by 
bad political decisions (see [1], [11]). In the TImaeus panel of the library, Michelangelo, the 
designer of the library, used the number relations (the scale) of the lambda figure which had pre-
viously been used as the musical system studied by Pythagoras [4]. 

Kappraff used the lambda triangle In Table 1 "found In Plato's Timaeus and referred to there 
as the World Soul" Strictly speaking, the lambda diagram displayed In Table 1 is that given In 
Taylor [10] but with the empty space between the two slanting lines A (hence the designation 
lambda) filled in a methodical and obvious way. Plato himself does not appear to have used the 
lambda figure as such though he used the two generating scales 1, 2, 4, 8 and 1, 3, 9, 27 shown by 
the slanting lines to describe the creation by the Demiurge of the World Soul. These scales are 
represented linearly (essentially In one line) in the commentary on the Timaeus [5]. 

TABLE 1. Tie Lambda Triangle 
1 

2 / \ 3 
4 / 6 \ 9 

8 / 1 2 1 8 \ 2 7 

The formation is obvious and one cannot resist the temptation to portray the associated left-
and right-triangular arrays (Tables 2 and 3). Clearly, these arrays may be extended Infinitely. 

TABLE 2o Left-Triangular Lambda Array TABLE 3. Right-Triangular Lambda Array 
1 0 0 0 0 0 0 1 
2 3 0 0 0 0 2 3 
4 6 9 0 0 4 6 9 
8 12 18 27 8 12 18 27 

It Is the purpose of this paper to describe some of the properties of these arrays and triangles. 

2. LAMBDA TRIANGLES 

The elements, u^m of the left-triangular array satisfy the partial difference equation 

^ » = ^ « h i + W i » n>0y0<m<n, (2.1) 
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(2.3) 

with boundary conditions un Q = 2n l
9 un m = 0 when n< 0 and m>n, and general term 

Mn,m = 2"-m3'"-1, (2.2) 

where n, m represent the rows and columns, respectively. We can see that the row sums, 1,5, 19, 
65, 211, ... (Sequence M3887 of [8]), are given by the second-order homogeneous linear recur-
rence relation 

vn = 5v„-i - 6v„-2> n > 3, Vj = 1, v2 = 5, 
= 3"-2", »>1. 

The partial column sums are displayed in Table 4. 
TABLE 4. Partial Column Sums of Left-Triangular Lambda Array 

1 
3 3 
7 9 9 
15 21 27 27 
31 45 63 81 81 
63 93 135 189 243 243 

The elements in the cells of Table 4 satisfy the partial recurrence relation 

Vn,m = Vn.m-l+W„-1.m-Wn-Xm-\, ri>m>\, (2.4) 
with general term 

w„,m = -i>»-\2"-»>*-\). (2.5) 

We now develop more general properties by means of the polynomials associated with the num-
bers in lambda triangles. 

3. ABSTRACT LAMBDA TRIANGLES 

Kappraffs array (Table 1) may be readily abstracted and extended as in Table 5 (a, h integers 
>0): 

TABLE 5. Abstract Lambda Triangle 

1 
a b 

a2 ab b2 

a3 a2b ab2 b3 

a4 a3b a2b2 ab3 b4 

The abstract lambda polynomials !£m (x) (where 2^ (x) = 1) may be easily read off from the rows 
of Table 5. To illustrate the situation we have 

%{x) = a4 +a3bx+a2b2x2 +ab3x3 + b4x4
 = H _ Z ^ E 1 . 

a-bx 
Interchanging a and b, we get the abstract reciprocal lambda polynomials lm(x) (with /j(x) = 1). 

Recurrence relations are, respectively, 
^ffl+2(*) = («+bx) 2m+1 (x) -abxXm (x), (3.1) 
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^ 2 0 0 = (b +axVm+ii*) ~ ®bx!m(x). (3.2) 
Gen.erating functions are, respectively, 

£ ^ ( x ) / - 1 = {l-[(a+bx)y-abxy1]}-\ (3.3) 

fdlm(x)y"'-l^{l-[b+ax)y-abxy2]r1. (3.4) 

Properties of these polynomials may be developed to include, for example: 
(i) Other fundamental features such as Binet forms, Simson's formulas, closed forms; 

(ii) Convolutions ^ } ( x ) , /£>(*); 
(iii) Rising and descending polynomials. 
We do this in Section 4 by considering a case closer to the original lambda triangle, namely, 

when a = n,b = n + l. 

4. GENERALIZED LAMBDA POLYNOMIALS 

We consider generalized lambda polynomials, Aw(x), and reciprocal lambda polynomials, 
Am(x), associated with the generalized lambda triangle of Table 6, which should be compared 
with Table 1. 

TABLE 6* Generalized Lambda Triangle 

1 
n w + 1 

n2 n(n + l) (n + lf 
n3 /I2(/I + 1) n(n + lf (#i + l)3 

n4 yi3(/i + l) n2(n + lf n(n + lf (w + 1)4 

The two classes of polynomials are related by 

AB(x) = x»-1AIB(iX 
Am(x) = *r-lAm(±). 

4.1 Am(x) Polynomials 

Basic properties of Am(x) are listed succinctly hereunder: 

A0(x) = 0 
A,(x) = l 
A2(x) = n + (« + l)x 
A3(x) = n2 + n{n + l)x + (n + l)2x2 

A4(x) = n3 + n2(n + l)x+n{n + l)2x2 + (n + l)3x3 

A5(x) = n 4 + » 3 ( » + l )x+« 2 (« + l)2x2+«(M + l)3x3 + (« + l)4x4 

(4.1) 

(4.2) 

Setting x = 1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial 
coefficients): 

{AOT(l)}-{l,2« + l,3w2 + 3w + l ,4«3 + 6w2 + 4« + l , . . . } . (4.3) 
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Recurrence relations; 
homogeneous: 

Am+2 (*) = [w + (/i + l)x]AmU(x) - w(/i + l)xAm(x). (4.4) 
inhomoegneous: 

Am+l(x) = nAm(x) + [(n + l)xY {m>0). (4.5) 

Roots of characteristic equation: 
/t,(/i + l)x. (4.6) 

Closed form: 
m-l 

Am(x) = YdnJ[(n + l)xrl-J. (4.7) 
y=o 

Binet form: 

K(x)=[(rl)f-nm- (4-8) 
w (w + l)x-w 

Simson9s formula: 
Am+1(x)Am_1(x)-A2

m(x) = -[n(n + l)xrl (m>l). (4.9) 
Generating function: 

£ Am(x)y-1 = {1 - [(/i + (n + l)x)y - n{n + l)xy2} } ~ \ (4.10) 
/ w = l 

4.2 Reciprocal Am(jc) Polynomials 

A0(x) = 0 

A2(x) = (ji + l)+nr 
vt3(x) = (w +1)2 + w(" + l)x + n2x2 {4Ai) 

A4(x) = (ft +1)3 + w(w + lfx + n2(n + l)x2 +n3x3 

A5(x) = (/i +1)4 + w(/i + l)3x+w2(w + l)2x2 + n3(n + l)x + n4x4 

Setting x = 1, m> 0, we obtain the sequence of coefficient sums, thus (observe the binomial 
coefficients): 

{ ^ ( 1 ) } = {1?2^ + 1?3?I2+3^ + 154W3+6W2+4W + 1?...} = {A?W(1)}. (4.12) 

Recurrence relations: 
homogeneous: 

*>m-2(x) = [(" +1) + ™Wm+l(x)- »(» + WJX). (4.13) 
inhomogeneous: 

Am+l(x) = (n + l)Am(x)H(n + l)xT (m>0). (4.14) 

Roots of characteristic equation: 
n + \m. (4.15) 
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Closed forms 
m-l 

^.w=I(^+i)vr1"/. (4.i6) 
Biiiet forms 

AmKX) H * - ( / I + 1) • ( 4 1 7 ) 

Simson's formula: 
*>m+i (xWnJx) -X2

m{x) = -[«(» + DxT1 {m * 1). (4.18) 

Generating function: 

I X C * ) / " - 1 ^{l-[(n + l+nx)y-n(n + l)xy2]y1. (4.19) 
m=l 

5* RELATED POLYNOMIALS 

In this section, polynomial properties of related convolutions and of rising and falling diago-
nals are sketched. 

5.1 Convolutions 
There are two types of lambda convolution polynomials which are related by 

W(x) = x>»-irt!?(i), (5.1) 

A2>(x) = x"-UW(iX (5-2) 

in which A(^(x) and ^(x) are the k^ convolutions of Am(x) and Am(x), respectively, and 
A^(x) is defined in terms of a generating function 

£ A(^(x)ym"1 = {l-l(n + (n + l)x)y~n(n + l)xy2]}-(k+l\ (5.3) 

whence we get the recurrence relation 

A(^(x) = A(*+1)(x) - (w + (w + l)x) A(^f(x) + n(n + l)xA(^(x), (5.4) 

For instance, when k = 1: 

A(
0
1)(x) = 0 (definition) 

A f ( x ) - 1 
A(

2
1)(x)-2w + 2(« + l)x (5.5) 

A(
3
1}(x) = 3»2 + 4n(n + l)x + 3(» + l)2x2 

A(
4
1}(x) = 4w3 + 6n2(n + l)x + 6n(n + l)2x2 + 4(w + l)3x3 

Analogously to (5.3) there is a generating function for A$(x) with n <-> n +1. 
If we consider ^ ( S ^ A ^ x ) / 1 " 1 ) / ^ , then we get 

(m - l)A(^-1}(x) - k{(n + (n + l)x) - 2n(n + l)xy} (5.6) 

= i{(w + w(w + l)x)A(^1(x)™2<« + l)xA(^2(x)}„ (5.7) 
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Replace k by k - 1 in Equation (5.4): 
A ^ C x ) = A«?(x) - (n + (n + l)x) A ^ ( x ) + *(#i +1) A<£2(x). (5.8) 

Now eliminate A(^(x) from (5.7) and (5.8) to get the recurrence 

(m -1)A(*>(x) = [k + m - l](/i + (w + l ) x ) A ^ x ) - w(/i +1)[2* + m - l]A(*l2(x). 

From this, with £ = 1, m -> m +1, we can get 

wys2hl(l) = (w + lX2it + l ) A ^ (5.9) 
Let 7i = 2 in Equation (5.9). Then 

BIA&.O) = 5(/« + 1)A»(1) -6(m + 2)A<£,(1). (5.10) 

Notice that in {A(^(x)} (reference (5.5) above) the numerical coefficients form a neat triangle as 
displayed in Table 7, in which the row sums are the tetrahedral numbers ("£3) (that is, 1,4, 10, 20, 
35, ...) and the rising diagonal sums belong to Sequence 1349 of [8] with general terms -^(n^3), n 
odd, and n(n + 2)(n + 4) / 24, n even. 

TABLE 78 Lambda Convolution Coefficients 

1 
2 2 

3 4 3 
4 6 6 4 

5 8 9 8 5 

5.2 Rising and Descending Polynomials 

Denote the rising and descending polynomials of Am(x) and Aw(x) by Rm(x) and rm(x) and 
Dm(x) and dm(x), respectively. They are related, in each case, by the interchange of n and « +1. 

Aw(x) Rising 
Rl(x) = l 
R2(x) = n 
R3(x) = n2+(n + l)x 
R4(x) = n3+n(n + l)x 
R5(x) = n4 +n2(n + l)x + (n + ifx2 

R6(x) = n5+n3(n + l)x + n{n +1)2 x2 

(5.11) 

Setting w = 2 and x = 1, we obtain the sequence 
{i?Jl)}= {1,2,7,14,37,74,175,350,...}. (5.12) 

Recurrence relations; 
homogeneous: 

R2m+l(x) = [n2 + (n + l)x]R2m_1(x)-n2(n + l)xR2n_3(x) (m>2), (5.13) 

R2m(x) = nRJk_l(x) (m>\). (5.14) 
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inhomogeneous: 

Xm{x) Rising 

R2m+i{x) = nR2m(x)+({n + l)x)m (m>0). (5.15) 

r2(x) = w + l 
r3(x) = (n + l)2 +nx 
r4(x) = (n + if + n(n + l)x 
r5(x) = (n +1)4 + «(« -h I)2 x+n2x2 

r6(x) = (n +1)5 + w(w 4- l)3x + n2(n + l)x2 

(5.16) 

Setting « = 2 and x = 1, we obtain the sequence 

{rM(l)} = {1,3,11,33,103,309,935,...}. (5.17) 

Recurrence relations: 
homogeneous: 

r2m+i(x) = [(n + l)2+nxy2m_l(x)-n(n + l)2xr2^3(x) (m>2\ (5.18) 

r2n^) = (P + \)rlm_l{x) (m>\). (5.19) 

inhomogeneous: 

^wiW=(w+iy2»,w+(«r (w^o). (5.20) 
Observe from (5.14) and (5.19) the link 

(« + l ) J ? 2 m ^ ^ (5.21) 

A quasi-reciprocal relationship between Rm(x) and rm(x) can be evolved subject to certain 
provisos regarding n and n +1. For example, 

i?5(x) = x2r5(^) if «2 -> w, w +1 -> (« +1)2. 

Check for r5(x) and J?5(x)- Likewise, look at i^(x) and r6(£), and r6(x) and i ? ^ ) . 
Patterns for /w odd and m even emerge. 

Am(jc) Descending 
Clearly, DJx) = nm~l(l -(n + l)x)-\ so 

D^x^nD^x) (5.22) 
and 

d D ^ = (n + l y - ^ l - (TI + l)x)"2. (5.23) 
ax 

If 
^5^j)sZ^)r1=(i-(»+W"1, 

then 
dDI8y'-£ (5 24) 
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lm(x) Descending 
Obviously, djx) = (n +1)^! - rar)"1, so 

dm(x) = (n + l)dm_l(x) 

Mm(X) _ ^ , ixw-l/i _ Y - 2 
A • = ̂  + l)w-1(l-/ir)-2. 

and 

If 

then 

Hence, 

and 

^M r _ w- i r i „ 12 
(5.25) 

Special Case 
Putting n = 2 in the results of Sections 4 and 5, we obtain the particular cases for the original 

configuration in Table 1. 
Further investigation of rising and descending polynomials could be undertaken; for example, 

the establishment of closed summation forms for Rm(x) and rm(x). 

6. FIBONACCI-LAMBDA TRIANGLES 

6.1 Fibonacci-Lambda Polynomials 
Suppose now that we replace a and b in Section 3 by a and /?, respectively, where a = ^—^ 

and P - ^y^. We then have a triangle whose row sums are, successively, 

1_ a-p h 

dDm{x) 
dx 

ddm{x) 
dx 

ddldy _ 
ddl dx 

_ x 

~ y' 

dx dy dy dx 

w l-nx 
_l-(#i + l)xj 

a2-p2_ 
a-p 

._a3-P3 

a-p 

^P = ^ ^ - = F2 

r ' - / ? ' ( 6 1 ) 

a3 + a2p+ap2+p3 = ^—^- = F4 a~P 

so that the »* row sums to 
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" a-p ' 
The Fibonacci-lambda polynomials <&m(x) will then have the recurrence relations 

^m+2(x) = (a+/3x)^m+1(x)-a/k^m(x), m>0, (6.2) 

Qmn(x) = aa>m(x) + (flc)m, m>Q. (6.3) 

The first few examples are 

O0(x) = 0 
<&,(*) = 1 
$>2{x) = a-fk 
<£3(x) = a2+a/fc+/?2jt2 (6A) 

<D4(x) = o? + a2fix + ap2x2 + p3x3 

<D5(x) = a4 + a3px + a2p2x2 + ap3x3 + p V 

Clearly, 

<&„0) = ^-
6,2 VfFibonacci-Lucas Triangle" 

To continue the Fibonacci theme in this section, we next form the triangle with elements bt • 
(where i refers to rows and j to columns) defined by 

Kj=bi-hj+bi-U-h / > 2 ? 0 < j < i 3 (6.5) 

with boundary conditions 
bu0 = Fi+2, i > 0; bUi = Z,+1, i > 1; bUJ = 0J>j, (6.6) 

in which Ln = an +ftn represents the Lucas numbers. This yields the formation in Table 8. Note 
that (6.5) and (6.6) lead to \ x - Fi+3 = bi+lf09 i > 1. 

TABLE 8. "Fibonacci-Lucas Triangle" 

1 
2 3 
3 5 4 
5 8 9 7 
8 13 17 16 11 

13 21 30 33 27 18 
21 34 51 63 60 45 29 
34 55 85 114 123 105 74 47 

This is termed a "Fibonacci-Lucas triangle" to distinguish it from the Fibonacci and Lucas 
triangles already n the literature [7]. The vertical and sloping sides of this triangle clearly have 
Fibonacci and Lucas numbers as their elements, but there are other connections, too. 
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6.3 Difference Operators 
Instead of considering sums along rows, diagonals, and columns, we here look at differences 

between rows and columns by means of the row and column difference operators defined by 
(6.7) 

For example, 

\Kj-

^Ar 

AAo=A+i,o-*,,o 
= A+3 ~ A+2 
= FM 

= * ; - l , 0 

= */,i-*/,o 

= AAo 

= bi+\,rKj> 

=Kj+\~Kj-

by (6.7) 
by (6.6) 

by (6.6) 
by(6.5)and6,_ijl = A,0 

by (6.8). 

(6.8) 

More generally, Ar, Ac are commutative operations: 

ArAeft/>/ = Ar(6/>/+1-6/t/) by (6.8) 

= ( W i -Kj+i) = &+w ~ kj) W (6.7) 

= AJbi+lJ-AcbiJ by (6.8) 
= AA*„. by (6.7). 

Other results can be investigated. For instance, 
A>Aj = Fi+2. (6.9) 

We can prove (6.9) by means of mathematical induction on i and/ 
By reversing the columns in Table 8 (that is, by making the Lucas numbers the left-hand 

exterior sloping side), one can also study these and other properties for a "Lucas-Fibonacci 
triangle"; this is a topic for further research. Are there, one might ask, any interesting relation-
ships between the "Fibonacci-Lucas" and the "Lucas-Fibonacci" triangles? 

7. CONCLUSION 

7.1 Bleary Extensions 
These lambda-type triangles can be extended indefinitely. For instance, we can construct a 

triangle of binary numbers as in Table 9. 

TABLE 9. Binary Triangle 

1 
10 11 
100 101 111 
IOOO looi ion m i 
10000 10001 10011 10111 11111 
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7.2 Determinants 
Two other properties which are commonly examined are the values of corresponding deter-

minants and modular arrays. The original left- and right-triangular lambda matrices (in Tables 2 
and 3) have determinants with values which are powers of 3 and 2, respectively. 
7*3 Modular Triangles 

The displays in Tables 10 and 11 represent the original extended lambda triangle (Table 1) 
modulo 5 and modulo 7, respectively. Table 10 has symmetry in its odd rows and Table 11 has 
neat patterns of cycles. Further research could involve seeking a modulus which could produce 
remainders to develop specific patterns such as Sirpinski triangles [9], arrowhead curves [7], or 
the partitioning of the triangles into square arrays [3]. 

TABLE 10. Lambda Triangle Modulo 5 

1 
2 3 

4 1 4 
3 2 3 2 

1 4 1 4 1 
2 3 2 3 2 3 

TABLE 11. Lambda Triangle Modulo 7 

1 
2 3 

4 6 2 
1 5 4 6 

2 3 1 5 4 
4 6 2 3 1 5 

7.4 Ongoing Research 
The purpose of this paper has been to explore some of the properties associated with the 

lambda triangle. In doing so, several ideas for further research have been suggested for the inter-
ested reader. Finally, in this spirit, one might extend the previous knowledge through negative 
numbers, that is, start with -2, - 4 , -8 , . . . and -3 , -9 , -27 , . . . (as in Table 1 with common vertex 
1). All this has no physical or artistic relation to our original Timaeus panel Indeed it is a world 
away from Plato and Michelangelo. 
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R E P O R T O N T H E T E N T H I N T E R N A T I O N A L C O N F E R E N C E O N 
F I B O N A C C I N U M B E R S AND T H E I R A P P L I C A T I O N S 

The Tenth International Conference on Fibonacci Numbers and Their Applications held at Northern 
Arizona University in Flagstaff, Arizona, from June 24-28, 2002, found over 70 enthusiastic Fibonacci 
number lovers from Australia, Canada, England, Germany, Italy, Japan, Mexico, New Zealand, Poland, 
Romania, Scotland, and the USA gathered together to hear over 50 excellent presentations. The gathering 
was attended by both old and new Fibonacci friends, but it was sadly noted that several regulars were 
unable to be with us this year. They were both warmly remembered and greatly missed. A special thanks 
to organizer Cal Long and all the folks at Northern Arizona University for their hospitality and generosity 
in hosting this outstanding conference. 

Monday through Wednesday morning found us savoring a variety of talks on things theoretical, 
operational, and applicable of a Fibonacci and related nature, with members sharing ideas while renewing 
old friendships and forming new ones. 

Later on Wednesday the group was doubly treated. After the morning talks, we were entertained by 
mathemagician Art Benjamin's most impressive presentation; displaying his skills and cleverness by 
mentally performing challenging mathematical manipulations and zapping out magic squares as if (yes!) by 
magic. After graciously sharing some of the secrets of his wizardry with us, he dazzled one and all by 
mentally and accurately multiplying two five-place numbers to terminate his mesmerizing performance. 

That afternoon we were bussed to our second wonder of the day: The Grand Canyon. Here we were 
able to spend several hours gazing at nature's wondrous spectacle. Oh to be a condor for an hour! In the 
evening a steak dinner was catered for us as we exchanged social and mathematical dialog to the 
background of exquisite scenic wonder at the edge of the Canyon. On the way back to the campus, we 
were able to witness a magnificent display of stars but an arm length away in the clear Arizona night sky. 

On Thursday and Friday it was back to many more interesting, informative presentations and during 
the breaks we were treated to Peter Anderson's marvelous computer display of the many photographs he 
took of association members and their families enjoying the Canyon. 

The closing banquet on Friday night terminated with a special tribute to Calvin T. Long for his very 
distinguished career of 50 years as teacher, mentor, and researcher, as well as valued friend, contributor to, 
and supporter of The Fibonacci Association. He was both praised and roasted by President Fred T. 
Howard and former editor Gerald E. Bergum. After much laughter and tears, Cal received a standing 
ovation from this proud and grateful group of his friends and colleagues. 

After over an hour of cordial good-byes, everyone eventually drifted away vowing that, Lord willing, 
we'll all meet again in Braunschweig, Germany, in 2004. 

Charles K. Cook 

416 [NOV. 


