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1. INTRODUCTION
We consider two sequences defined by the recursion relations
U =0, uy=1u,,=au,,-bu, (0]
V=2, =4, vV, =av,, ~by, V)

where a and b are integers which are nonzero, D =a*—4b #0. Then

u,,=aa_§ , V,=a"+ ", ?3)
where o and # are distinct roots of the polynomial f(z) = z>—az+b. Each u, is called a Lucas
number, which is an integer. A Lucas sequence {u,} is called degenerate if the quotient of the
roots of fis a root of unity and nondegenerate otherwise. Throughout this paper we assume that
a and b are coprime.

The problem of determining all the perfect squares in a Lucas sequence has been studied by
several authors: Cohn, Halton, Shorey, Tijdeman, Ribenboim, Mcdaniel, among others. In 1964,
Cohn [1], [2] proved that when a=1 and b=-1, the only squares in the sequence {u,} are
4, =0, u, =u, =1, and u,, = 144, and the only squares in the sequence {v,} are v, =1 and v; =4.
In 1969, by using the theory of elliptic curves, London and Finkelstein [5] proved that the only
cubes in the Fibonacci sequence are F;=0, F;=F, =1, and F,=8. Shorey and Tijdeman [9]
proved for nondegenerate Lucas sequences that given d # 0 and e >2, where d and e are inte-
gers, if u,, =dU°® with U # 0 (U integral), then m is bounded by an effectively computable con-
stant. In 1996, Ribenboim and Mcdaniel [8] proved that, if @ and b are odd and coprime and if
D =a’-4b is positive, then u, is a perfect square only if n=0,1,2,3,6, or 12, v, is a perfect
square only if n=1,3, or 5.

The aim of this paper is to give an elementary proof of a special case of the above result
obtained by Shorey and Tijdeman [9]. Developing the argument of London and Finkelstein [5],
we obtain the following results.

Proposition 1: Let n>0 be an integer of the form n=4m+r with 0<r <4. If u, is a perfect
square, then the rational point (Ds?/b*", Dst /b*") lies on the elliptic curve y* = x> +4Db x,
where D=a*>~4b, s* = |u,|, t =v,, all of which are prime to &.

Proposition 2: Let 0<r <4 be a fixed integer. If b is even and the group of rational points on
the elliptic curve y® = x*+4Db’x has rank zero or rank one, then u,,,, is a perfect square only
for finitely many m>0.
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2. PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1
Let @ and B be distinct roots of the polynomial f(z)=z*-az+b. Since af=b and D=
(a— B)* we obtain, from (3), v2 — Du? = 4b". Suppose that the n' term u, is a perfect square.
Putting |u,| = s* and v, = ¢, from the equality above we have 2 = Ds* +4b". Multiplying through
by D%s?, we see
(Dst)? = (Ds*)® + 4D(Ds*)b".

Writing 7 = 4m+r with 0 <r <4 we obtain

2 7\3
Dst Ds Ds*
(bTm) = (‘bﬂ) +4Db" (bz—m)

Next we shall show that Ds?/b*" and Dst /b are in lowest terms. Let p be an arbitrary
prime divisor of 5. Then, from (1) and (2), we have u, =a™"! (mod p) and v, = a" (mod p). Since
a and b are coprime, u, # 0 (mod p) and v, # 0 (mod p); furthermore, D =a* —4b =a’* # 0 (mod
p). We have thus completed the proof. O

Before proceeding to the proof of Proposition 2, we will need the following information.

Let ¢ be a nonzero integer and let C be the elliptic curve given by the equation y? = x> +cx.

We denote by I" the additive group of rational points on C and by O the zero element of I'.

Definition 1: For P=(x,y) el’, we write x = p/q in lowest terms and define the logarithmic

height of P by
h(P) = log max(| P|,|q|).

Definition 2: For P €T, the quantity
h(2" P

4’!

A(P) = lim
n—»oo

is called the canonical height of P.

The following two fundamental theorems on the height are well known, so the proofs are
omitted (see [4] or [10]).

Theorem 1: There is a constant i, that depends on the elliptic curve C, so that
|h(2P)—4h(P)| <k, forall PeT. “4)

Theorem 2 (Néron): There is a constant x, that depends only on the elliptic curve C, so that for
all positive integers 7 and for all P €I" we have

|W(nP) - *h(P)| < k. (5)

Definition 3: For P=(x,y) in I, we write x = p/q in lowest terms and denote by A(P) the
exponent of the highest power of 2 that divides the denominator ¢q. By convention, we define
A0)=0.

Lemma 1: Let P T with P = (0,0). If A(P)#0, then A(2P) = A(P)+2.
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Proof: We can write P =(x, y) =(m/e?,n/e®), where m/e* and n/e’ are in lowest terms
with e >0. Then the x coordinate of 2P is given by

W 4c) _(m—ce*y
2y (2en)®

x(2P)=-2x +(

Since e is even and m, n are odd, A2P) = A(P)+2. O
Lemma 2: Let F, and P, be in I' with A #(0,0) and P, #(0,0). If 0<A(R) <A(F,), then
AR +B) < A(B).

Proof: If B,=0, then A(F+F,)=A(B). So let us write B, = (x;, ) =(m/e*,n/e’) and
P, =(xy, y,) =@/ f*, 7/ f*), where m/e*, n/e’, m/f*, and 71/ f* are in lowest terms with
e>0 and f >0. Then the x coordinate of F, + P, is given by

2
XB+B)=—x-%, +(¥)
_ (nf® -ne®) — (mf* —me*) (mf* + me*)
erZ(mfZ __meZ)Z :
Since 0 < A(R) < A(B,), we can write e =2°¢’ and f =2’ f', where ¢’ and f' are odd and s and #
are integers with 0< s <. Then x(F, + B,) becomes
(23[—3snfl3 _ﬁe73)2 _ (22t—2:mf12 _ﬁe12)2(221—2$’mf'2 +me12)
22!er2f/2(221-2smf12 _ meﬂ)z :

Since e’, f’, m, and 11 are odd, we have A(A + F,)<2¢t. Combining this with A(5,) =27, we
obtain A(F+B)<A(F). D

Lemma 3: Assume that I" has rank one, and let P be a generator for the infinite cyclic subgroup
of I'. Let ¢, denote the least positive value of the integer # such that A(#P) #0. Then, for any
integer /> 0, if 2’1, < n < 2", then A(nP) < A(2't,P).

Proof: We use strong induction on /. First we show that the result is true for /=0. Suppose
t,<n<2t,. Then we can write n=17,+r with 0<r <#,. Since A(P)=0 and A(#,P)>0, by
Lemma 1 we have A(nP) = A(t,P +rP) < A(#,P).

Next we suppose that the result is true for each /=0,1,2,..., k. For any integer » satisfying
2814y < n < 2¥*24), there exists an integer r such that n=2%""7)+7 and 0 <r <2**!#,. The induc-
tion hypothesis gives A(rP) < 1(2*1,P). By Lemma 1 we have A(2%#,P) < 1(2**!#,P). Therefore,
A(rP) < A(2**11,P); thus, by Lemma 2 we have A(nP)=A(2**'4,P +rP) < A(2**'t,P), which
shows that the result is true for /=% +1. Hence, the result is true for every integer /> 0 and the
proof is complete. O

Proof of Propesition 2

We put R, = (Ds?/b*", Dst /™), where s* = |u,,,,,| and =v,,,,. Assume that I" has rank
zero. Then it is a finite cyclic group, and so the rational point R, lies on the elliptic curve C only
for finitely many m > 0; therefore, #,,,,, is a perfect square only for finitely many m>0.
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Next assume that I" has rank one. Then I'= Z® F, where Z is an infinite cyclic group and F
is a torsion group of order two or four (see [4] or [10]). Let P eI be a generator for Z and
Q €T for F. Now suppose that the rational point R,, lies on the elliptic curve C. Then there are
integers 7 and j such that

R, =iP+ jQ. ©)
Since 40 = O, where O is the zero element of I, we obtain
4R, =4iP. @)

The essential tool for the proof is the logarithmic height. Since A(4iP) = h(—4iP), we can
assume i >0 without loss of generality. Let &, be the least positive value of the integer k such
that A(kP) # 0. Then there is an integer / > 0 such that 2'k, < 4i < 2"*'k,. From Lemmas 1 and 3,
we find A(4iP) < A(2'kyP) = A(k,P)+2I. Since A(4iP)= A(4R,)>2m, putting A, = A(k,P), we
obtain 2/ > A(4iP) - Ay > 2m— A,. Hence, 4i >2'k,>2m"/2,

Now, Theorem 2 tells us that there is a constant K, depending only on the elliptic curve C, so
that

h(4iP) > (4)*h(P) - K, > 2*"*h(P) - K,. ®)

Next we estimate for #(4R,). Let a and f be distinct roots of the polynomial f(z)=z*~
az+b. Putting y = max(|a/|, |F|) 21, we find
162" | = | < y ",
|Ds*| = | Dty | =l = Blla*™* = f4|
< (el +BD(a™ +|BI™T) <4y
Therefore, A(R,) < log4y*™?Y = 4(m+1)logy +2log?2. Hence, by Theorem 1,
h(4R,) <16h(R,)+ 5K, < 64(m+1)logy +32log2 +5K,, ©

where K, is a constant depending only on the elliptic curve C.
It follows that, if the rational point R, lies on the elliptic curve C, then m satisfies the follow-

ing inequality:
64(m+1)logy +32log2+5K, > 2*" " h(P) - K,. (10)
However, there exists a constant N >0 such that inequality (10) is false for every m> N, so

the rational point R, is not found on C for every m> N. We conclude from Proposition 1 that
U,,,,, 18 not a perfect square for every m> N. We have thus completed the proof. O

3. APPLICATIONS

Following Silverman and Tate [10], we describe how to compute the rank  of the group I
of rational points on the elliptic curve C: y? = x> +cx with integral coefficients. Let Q" denote
the multiplicative group of nonzero rational numbers, and let @* = {u*:u €@*}. Now consider
the map ¢ : T — @*/ @*? defined by the rule:

p(0)=1 (mod @*%)
9(0,0)=c (mod Q*?)
o(x, y)=x (mod@*?) ifx=0.
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On the other hand, let T denote the group of rational points on the elliptic curve C : y* =
x> —4cx. Using the analogous map @ : T — Q*/ @2, we obtain the formula for the rank of T":
y - HoD-#80) a
where #¢(I') and #%(T") denote the order of @(I") and the order of @(T), respectively.
Next we describe how to determine the order of @(I'). It is obvious from the rule of the map
o that {1, c(mod @*?)} c o(I).
Now, for P =(x, y) eI" with y # 0, the coordinates x and y are written in the form

o M? o MN

X = y =
7 3
€ e

in lowest terms with M =0 and e >0, where ¢, is an integral divisor of ¢, so that c=c¢c,. Here
M, e, and N must satisfy the equation

N?=cM* +cpe, (12)
and also the conditions

ng(M’ e) = ng(N’ e) = ng(cl’ e) = 1’
ged(cy, M) = ged(M, N) =1

Hence, for a factorization ¢ = ¢, if the equation N 2= ¢, M* +cye* has a solution (M, e, N) with
M # 0 that satisfies the side conditions above, then ¢, (mod @*?)is in @(T'), otherwise it is not.

Proposition 3: Let p be a prime and let C be the elliptic curve y? =x* —4px. If p=3 (mod 4),
then the group I" of rational points on C has rank zero or rank one.

Proof: Since ¢ =—4p, the possibilities for ¢, are ¢, =+1,£2,+4, £p+2p +4p. So we see
that @(I') c {£1, £2, +p, +2p (mod Q*2)}. We shall show first that —1 ¢I". Let us consider the
equation

N?=-M*+4pe*. (13)

This implies the congruence N2 =-M* (mod p). Since p=3 (mod 4), we have (-1/p)=-1,
where (—1/p) is the Legendre symbol of —1 for p; hence, the congruence above has no solutions
with M # 0 (mod p). So equation (13) has no solutions in integers with gcd(M, N)=1. Simi-
larly, the equation N2 = —-4M* + pe* has no solutions in integers with gcd(M, N) =1. Therefore,
—1 ¢9(I), and hence #p(I') =2 or #p(I') =4.

On the other hand, let C be the elliptic curve y? = x*+16px, and let T denote the group of
rational points on C. Since ¢=16p, we have (L) < {1,2, p, 2p (mod @"%)}. We shall show
by contradiction that 2 ¢ 3(I'). Let us consider the equation

N? =2M* +8pe*. (14)

Suppose equation (14) has a solution in integers with M # 0 and gcd(M, N)=1. Then N is even.
Putting N = 2N,, we have 2N} = M* +4pe*, showing that M is even, contrary to the hypothesis
that M and N are coprime. Hence, equation (14) has no solutions in integers with ged(M, N) =1.
Similarly, the equation N? =8M* +2pe* has no solutions in integers with gcd(N, €) =1. Thus,
2 ¢@(T), and so #@(T') = 2. By formula (11), we find

464 [Nov.



PERFECT SQUARES IN THE LUCAS NUMBERS

7= #¢(r)4#¢(r) =lor2

Therefore, I" has rank zero or rank one. O

Proposition 4: Let p, q be primes and let C be the elliptic curve 32 = x*—4pgx. If p=5 (mod
8), ¢=3 (mod 8), and (p/q) =-1, then the group T of rational points on C has rank zero or
rank one.

Proof: Since ¢ =-4pq, we have o(I') c {£1, £2, +p, +q, +2p,+2q, + pg,+2pq (mod Q*?)}.
We shall show, for instance, that —2p ¢I". The hypotheses give

B B-RHE B

Hence, the congruence N?=-2pM* (mod ¢) has no solutions with M #0 (mod g) because
(-2p/q) =(-1/9)(2/9)(p/q) = -1, so N*=-2pM*+2ge* has no solutions in integers with
gcd(M, N) =1. Therefore, —2p ¢I". By using the same argument, we can show that ¢(I') does
not have any elements of {—1,+2, p, +q, -2p, pq,2pq}. Thus, we obtain #p(I') < 4.

On the other hand, let C be the elliptic curve y* = x* +16pgx, and let T denote the group of
rational points on C. Since ¢ =16pg, we have a(T') = {1, 2, p, q,2p, 2q, pq, 2pq (mod Q*?)}.
By using an argument similar to the one above, we can show that p ¢@(I') and q ¢@(T).
Furthermore, by using an argument similar to the one we gave in the proof of Proposition 3, we
can show that @(T") does not have any elements of {2,2p, 2q, 2pq}. Thus, we obtain #p(I') =2.
Therefore, by formula (11), we find 2" <2. In conclusion, I" has rank zero or rank one. O

In addition, the following proposition holds. The proof is completely analogous to that of
Proposition 4.

Proposition 5: Let p, q be primes and let C be the elliptic curve y* =x* —4pgx. If p=1 (mod
8), ¢=7 (mod 8), and (p/q)=—1, then the group I' of rational points on C has rank zero or
rank one.

Now let us consider the Lucas sequence determined by u, =0, =1, u,,, =au,,, —bu,,
where a and b are coprime integers that are nonzero, D =a*—4b#0. Assume that b is even. If
D =-p<0, where p is a prime, then p=3 (mod 4). If D=-pg <0, where p and g are primes,
then (p,q)=(3,5) (mod 8) or (p,q)=(1,7) (mod 8). Hence, the following three corollaries
hold.

Corollary 1: Assume b is even and D = —p <0, where p is a prime. Then there are only finitely
many perfect squares in the subsequence {u,,} .

Corollary 2: Assume b is even and D =-pq <0, where p and ¢ are primes with (p/q) =-1.
Then there are only finitely many perfect squares in the subsequence {u,,,} .

Corollary 3: Assume b is of the form b = (2d)* for some integer d. If D=-p, where p is a
prime, or if D =—qr <0, where g and r are primes with (g/r) =—1, then there are only finitely
many perfect squares in the sequence {u,}.
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Proof: Suppose that the n™ term, u,, is a perfect square. As mentioned above, we have
12 = Ds* + 4(2d)*", where s* = |u,| and ¢ = v,. This implies

pDst |* [ D |® Ds?
{(w)’"} ‘{(w)“} +4D{(2d)2"}’

From Propositions 3, 4, and 5, we obtain that the elliptic curve y* = x> +4Dx has rank zero or
rank one. It follows that u, is a perfect square only for finitely many »>0. O
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