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1. INTRODUCTION

The second-order linear recurrence sequence U = {U,}, n=0,1,2,..., is defined by integers
a, b, U,, U, and by the recursion U,,, =bU,,, +aU, for n>0. We suppose that ab = 0 and not
both U, and U, are zero. If o and S denote the roots of the characteristic polynomial x* —bx—a
of the sequence U, then we have the Binet formula (see [1]):

Aa" - Bp"
U,=—>—
n a_ﬂ >
where A=U,-U,pf and B=U,-U,a. The generating function is
iUnxn _U+ U, "Uob)x_
n=0

2

If U, =0, U, =1, then the sequence ¥ = {U,} is called the generalized Fibonacci sequence,
and &, = %

In order to express our results, we denote by o, ;(n, k) (7, j, and k are nonnegative integers)
the summation of all products of choosing j elements from n+2k -1, n+2k-2, ..., n+2k—i+1
but not containing any two consecutive elements. We note that o; ;(n,k)=0 if j<O0 or j> [g],
0;0(n, k)=1(20), o, ,(n k) =3 (i—-1)(2n+4k i) (i =1). For example, when i = 6, we have

1-bx-ax

os,0(m k) =1,
O (k) =(n+2k-1)+(n+2k-2)+(n+2k-3)+(m+2k -4)+(n+2k-95),
O (M K)=(n+2k~D(n+2k-3)+(n+2k - D(n+2k -4+ (n+2k -+ 2k -5)
+(n+2k-2)n+2k—-4)+(n+2k -2)(n+2k-5)+ (n+2k - 3)(n+2k - 5),
0'6,3(n, k)= (@m+2k - )(n+2k-3)n+2k-5).
It is easy to prove that
(n+2k -Dosy g g k-D =0y (0, k) (k21

and
n+2k-Dop, i qmk-D+o,, 0,0+ Lk-D =0, (k) (1<i<k k22).

Recently, W. Zhang [2] obtained the following result: Let U = (U,} be defined as above. If
U, =0, then for any positive integer k¥ >2, we have
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Uk—l
‘Z v,u, ..U, v g MU, 1y +h_ (MU, ],

ajtay+---+ap=n o (b2 + 4a)k—l(k - l)!

where the summation is taken over all n-tuples with positive integer coordinates (ay,a,, ..., a,)
such that a, +a, +-+-+a, =n, and he pointed out that g,_,(x) and A,_,(x) are two effectively
computable polynomials of degree k& — 1, their coefficients depending only on @, b, and %.

In this paper, we obtain

k-1
&ia(n) = Z (za)ibkviﬂ(n —k+ 1>k—i—10'k+i—1,i(n ~k+LEk-DF_; (k=1
i=0
and

k-l
B () = az Qayb " n—k+ DieiciOhsim, =k +LEk-DF ., (k21

i=0

where (n), =n(n+1)---(n+k—1) with (n), =1. We also give the congruence relation
g,y +hy (MU, =0 (mod (k- 1! +4a)t™) (k2 1),
which generalizes the results presented in {2].

2. THE RESULTS AND THEIR PROOFS

In this section, with U, =0, let

U FR (k)1
G(xX)=|——5 =ZU,, X"

1-bx —ax?

n=0
Then
X Ugﬁ)U‘(lfz) U‘S:m) - Uﬁ,,:fr...»,k,,,)'
aytayt+---ta,=n
Taking k, =k, =---=k, =1, we have
Lemma I: Z u,U, U, = gm

aytay+---+a,=n

Theorem 1: U*D = k(bz—({il-éia—i {mbU®) +2a(n+2k-DUP} (k=1).
Proof:
% (G, ()b +2a%)") = GL()(B + 20 + G () (B +2ax)2a
and

U, (b+2ax)\*
‘%(Gk ()b +2ax)F) = %(’—‘““——1 i(b;:— gz) )

Ub+ 2ax))"“‘ 2a(1 - bx — ax®) + (b + 2ax)?

- kUl(1~bx—mc2 (1—bx —ax®)?

2002] ' 395



A NOTE ON A CLASS OF COMPUTATIONAL FORMULAS INVOLVING THE MULTIPLE SUM OF RECURRENCE SEQUENCES

k-1 2.2 2
= k(b+2ax)"'1Ul( U, ) 2a°x° +2abx +b" +2a

1-bx - (1-bx—ax?)?
= k(b -+ Zm)k-lU ( Ul )k—l —2a(1 —bx—‘lxz) +b2 +4q
N 1-bx —a? (1~bx—ax2)2 .

Hence,

G (x)(® +2ax)* + G (x)k(b +2ax)*'2a

= k(b +26m)k_1U ( Ul )k_l _2(1(1 —bx—mz) +b2 +4a

! 1—bx—ax2 (l—bx—ax2)2 .

Therefore,

G (x)U,(b + 2ax) + 2akU,G,(x) = —2akU,G,(x) + (b* + 4a)kG, . ,(x).
This concludes the proof of Theorem 1. O
Theorem 2: UV = WZ ay 8" )10, i () Upais (K 20).

Proof: This theorem can be proved by induction. When % = 0, the theorem is trivial. When
k =1, the theorem is true by applying Theorem 1. Assume the theorem is true for a positive
integer k£ —1, then

Uk = }(TZU—ZG)— (nbU®) +2a(n+2k -1)UP}

__ b U
_k(b2+4a) (k 1)l(b2+4

k-1 Z(Za)lbk—’_l<n+ 1>k—r 1, iO ki~ 1, z(n+1 k 1) n+k—i
a)

Uk—l R
+ 2a(n+ 2k — l) (k 1)'([)2 4 )k 1 2(20) bk 1<n>k—1 10 ke4i-1, l(n k- 1) n+k—i— l}

U & ipk—n
W{ Z(za) 4 n+ 1>k =10 kti-1, 1(n+1 k- 1) n+k—i

k-1
+Y Ray"o N nyy (4 2k - D)oy, (1, k-1) Un+k—i—l}
i=0

Uk k-1 '
m{ > Qayb Y04y M+ L k= DU,

=0

+Z(2a)’b""(n>k_,("+2k DOk sim, i1 k=D, +k—1}

U

W{bk@)lco'k Lo +1 k-1, +k+2(20)' Y Uil O i i k=1)

+(+2k =10y, (n, k= D]+(2a)* (0 +2k - Doy 5 51 (n, k- 1)Un}
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Ur £ N

k'(bz _:_ 4a)t { k(")kak,o(n +L0U,,, + Z(Za)'bk_'(n)k_,.UHkﬂ,»O’kH’ (n, k) + (Za)ko'Zk, <, k)Un}
Ul lbk—l

k|(b2 +4a )k Z (20) <n>k—l O-k+1 1(" k) n+k—i-

That is, the theorem is also true for £. This proves the Theorem 2. O

Lemma2: U, =%.,U,+a% U, , (k=20,m21).
Proof: Use Binet's formula. O

Ty S Qo s O Fisa Uy +0%e Uy (20

Proof: Use Theorem 2 and Lemma 2. O
Theorem 4: Z v,U,, U,

a -~ a”

Theorem 3: U%*D =

aj+ay+ - +ag=n

Uk
T O+ 4a) (k-1

{I:Z(Za)’bk~‘ 1<n k+1>k—1——lo-k+t l,x(n k+l k 1)gsk—ti| n—k+1

k-1
+a |: 2 Qayb T =k 1) Oy (k1 k- l)gk—i—l]Un—k} (k=1).

i=0
Proof: Noting Lemma 1 and Theorem 3, we have
> v, v, ..U, =U, ®)

aj+ay+--+ag=n

Uf~
(k 1)|(b2 +4a

X (Fi Upoprs +aFi, U, y)

)k —~1 Z(2a)xbk_' 1<n k+ l>k l—lo—k-—l+l I(n k +1 k- 1)

NG +4cglk_1(k 1)'{[2(261)’%1 =kt DO =k LD, ] HH}

k=1
+a [ Z (Za)ibk-i_1<" —k+ Dy 10y, (=K +1, k- I)gk—i—l:lUn—k} 0
i=0

From this theorem, we can get the expression of g,_,(n) and A,_,(n), namely,

k=1
M) =Y Qayo" -k + 1104y -k +LE-DF, (k2])
i=0
and

k-1
Ba)=ay 2a)b -k +1) 104y ik +LE-DF_, (k21).

i=0

Theorem 5: g,_ (WU, +h_(m)U,_, =0 (mod (k-6 +4a)*™) (k=1).
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This result is a generalization of Corollary 2 of [2]. When U, =a=5b=1 and k=12,3,
respectively, this result becomes (i)-(iii) of Corollary 2 of [2].
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THE PASSING OF THREE FIBONACCI ASSOCIATION FRIENDS

We were all deeply saddened to learn of the recent deaths of Joe Arkin, Daniel Fieider
and Peter Kiss. These three long-time members of the Fibonacci Association will be
greatly missed.
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