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1. INTRODUCTION 

Problems of interest in goldpoint1 geometry [1] arise from study of tile-figures that are 
obtained when goldpoints are marked on sides of triangles, squares, pentagons, etc. and joined by 
lines in various ways. Many combinatoric problems arise naturally in the course of such studies. 
Another type of problem is to determine how to combine collections of golden tiles in jig-saw 
fashion, so that they tile a given geometric figure (or the whole plane) with goldpoint marks on 
touching sides corresponding everywhere. 

Examples of these types of problems are the following: 
(i) Find how many different golden tiles can be formed from regular polygons; that is, find 

how many inequivalent golden triangles, squares, pentagons, etc. there are. 
(ii) Given a regular hexagon, find how many different ways it can be tiled by equilateral 

golden triangles, jig-saw fashion. 
In this paper I introduce a new type of problem into goldpoint geometry. I study a variety of 

fractals which are achieved by using as base the segment [0, 1], and a motif which involves the 
goldpoints of that segment.2 

In Sections 2 and 3, the goldpoint dust set and snowflake are defined, and some of their 
properties are derived. 

In the following section, I describe goldpoint fractals which I dedicate to the memory of the 
inspirational American mathematician Herta T. Freitag, who passed away early in 2000 in her 91st 
year. 

In the final section, I present studies of fractals which are based on the regular pentagon. It is 
well-known (indeed the knowledge goes back to extreme antiquity, since it is mentioned in cabal-
istic literature) that the golden mean occurs frequently in the geometry of the pentagon [3] and its 
accompanying pentagram star. It is hoped that the results given below on pentagon fractals will 
add to existing literature on the pentagram. 

29 THE GOLDPOINT DUST SET 

We define the goldpoint dust set (the gp-dusi set) by prescribing an infinite process similar to 
that used to produce Cantor's fractal set. 

1 A point P m a segment AB is a goldpoint of AB ^AP/PB Is either a or \la (a Is the golden ratio). 
2 The terms %asef and emotif are now well known. Excellent references for these terms, and for several of the 
analytic techniques used in this paper are [2] and [4]. 
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We take the unit line-segment [0, 1] on the x-axis, and compute its goldpoints, which are at 
points (a"1,0) and (a~2, 0); call these points Gx and G2, respectively. Then we discard all points 
in the open set of the segment (GXG2). 

Next we compute the positions of the goldpoints Hl9 H2 and H3, H4 of the two remaining 
segments [Gl91] and [0, G2], respectively. Then we discard the two open sets between these two 
pairs of goldpoints. 

H4 H3 H 2 Hi 
#——#—#— m »# ©—# • 
0 G 2 G1 1 

FIGURE 1. Stage 2 of the formation of the gold point dust set 

We continue this process ad infinitum, at each stage discarding all the central open sets 
between pairs of goldpoints. 

The limiting set of points is called the goldpoint dust set of [0,1]. All points in it, except the 
two endpoints, are goldpoints of some segment in [0,1]. 

Some properties of points in the gp-dust set are described next. 
Gl9 G2 are the goldpoints of line segment [0,1], and G3, G4 are the goldpoints of [0G2]. 
Measuring lengths from 0, and writing Gt for |[0GJ|, we find: 

Gl = l/a* + l/a3 = l/a = F_ta+F_2 
G2 = l / a 2 = - a + 2 = F 2 a + F 3 
G3 = l/a4 + l/a5 = l/a3 = F_3a + F_4 
G4 = l / a 4 =F_4a + F_5 

and so on. 
Similarly, Hl9 H2 are the goldpoints of line segment [Gl91], and for them we find: 

Hl = l/a + l/.aA + l/a5 = l/a + l/a* 
H2 = l/a + l/a4 

It may be noted that: 
Gj is a goldpoint of [0,1] (given), 
Gt is a goldpoint of [G2H2] (since G2Gt = a"3 and GXH2 = cr"4), 
Gt is a goldpoint of [G3HX] (since G3GX = a'2 and GXHX - a"3). 

It follows that, as the process of discarding central open segments continues, all of the points 
left in the dust set are goldpoints (0 and 1 are excluded); in the limit, each point is a goldpoint an 
infinite number of times, with respect to pairs of other points in the dust set. It might be appro-
priate to call this the gold-dust set. 

It is evident from the above analysis that each goldpoint in the dust set can be expressed 
uniquely in a»nary form thus: 

goldpoint = O.CjCjfy • • • s cta~l + c2a~~2 + c^a"3 + • • •, 

where all the q coefficients are zero or unity, and with no pair of adjacent coefficients being (1,1).* 

* If in the calculation of a goldpoint we obtain both ct = 1 and cl+l = 1, we are required to combine the adjacent 
terms, using a~* +a~(i+l) = a~(i~l). 
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Examples £ 
Gx = 0.1, G2 = 0.01, G3 = 0.001, etc. 
Hx = Gt + a-4 + Q-5 = Q + a"3 = 0.101, 
H2 = Gt + a~4 = 0.1001. 

The goldpoint dust set is the set of all points in (0,1) which have this type of a-teraary form 
(reminiscent' of maximal Zeckendorf representations of n in terms of the Fibonacci numbers). 

3. THE GOLDPOINT SNOWFLAKE 

The following diagrams show how a snowflake fractal (a la von Koch, 1904) can be con-
structed from a line segment base, and the motif given as phase 1 in Figure 2. G and H are the 
goldpoints of the line segment [0,1]. Phases 2 and 5 indicate how the fractal develops. Since 
OG = Hl = l/a2, and the reduction factor is r - a2 at each step, the length of the perimeter of 
the snowflake at phase p is Pp = (4 / a2)p for p = 0,1,2,.... 

phase 1 phase 2 phase 5 

FIGURE 2. Development phases of the goldpoint snowflake 

Fractal (or self-similarity) dimension 
At each step, from each segment m = 4 new segments are formed, with length reduction 

factor r = a2 in every case. Hence, the fractal dimension of the goldpoint snowflake is 

dJogm= tog4_ = L44042... logr 2 log a 

4. HEMTA'S SHIELD, STAM JEWEL AND COMB 

In the last few months of Herta Freitag's life, I sent her three goldpoint fractal diagrams, 
which 1 hoped would amuse her. The shield (1 said) was for her protection, and was drawn on her 
90th birthday card. The jewel for her dress and the comb for her hair were sent later with get-
well messages. Sadly, my shield did not avail her for long; however, I was sure that she would 
appreciate the diagrams and look for the relationships to the golden mean that are evident within 
them. 

Both the shield and the star jewel are developed with goldpoint snowflakes on the sides of an 
equilateral triangle. The shield is exterior to the triangle; the jewel is interior to it (see Figs. 3 and 
4). 

Figure 5 shows Bella's goldpoint comb; 1 imagined it to be made of ivory. In the limit, it has 
an infinite number of teeth, the prong points forming a set of Hausdorff measure zero and equiva-
lent to the gp-dust set. I don't know what it would have done to her hair. It is easy to see how 
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the comb is built up of rectangles erected upon line segments parallel to those 'left in1 during the 
process of obtaining the goldpoint set (see Fig. 2). Upon each segment, a golden rectangle is con-
structed, with the horizontal segment being the larger side. 

FIGURE 3e Herta's goldpoint shield (phases 2, 3, and 5) 
[The dotted bounding-polygon is added In 2 to demonstrate the shield's outer shape.] 

FIGURE 4 Herta's star jewel (phases 2,3, and 5) 
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FIGURE 5. Berta's goldpoint comb 
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Figure 5 shows how the short sides of the rectangles have lengths In the sequence: 
1 1 1 1 

This is a geometric progression of common ratio lid1, and its infinite sum is 1. Therefore, the 
goldpoint comb has height 1 and it covers (in the limit, and except for the limit line) a square of 
side 1. 

Thus, the unit square of the comb is tiled by golden rectangles in an interesting way. 
If we check the fhole' or 'spaces1 in the comb, we see that they are also rectangles, all standing 

on the horizontal limit line where the teeth 'end1. Again checking the dimensions, we see that each 
of these rectangles is also a golden rectangle. Moreover, the largest sholef rectangle is equal to the 
second largest ivory rectangle; the second largest fholef rectangle is equal to the third largest ivory 
rectangle; and so on. 

Tie area {A) of t ie Ivory 9 and t ie area (H) of t ie fh©les? 

Working directly from Figure 5 we get, for the total ivory in the comb: 

i4 = l x l + 2x-V + 4xJL + 8x-lJ+... = l f ; r A y = ^ . 
a a5 a9 a13 aM\& J 3 

Then, for the area of the 'holes' in the comb: 

H=l-A = \~a2 = ~ V [Check: (a2+a~2)-3.] 3 3 or 

5. THE GOLDPOINT MOTIF TRIANGLE, AND PENTAGON FRACTALS 

In this final section we first analyze the goldpoint motif triangle, showing various ways by 
which it can be partitioned. 

Then we take a regular pentagon and study some of its goldpoint properties. We show how 
a fractal of pentagon fractals can be constructed within it, and point out one or two of the prop-
erties of this object. 
Properties of t ie goldpoint motif bounding triangle 

In Figure 6(a) below, the goldpoint motif AGCHB is shown, together with its bounding tri-
angle ABC. (It was also shown in Fig. 2 above.) This triangle partitions into two (108°, 36°, 36°) 
triangles, viz. AGC and BHC, which we call S-triangles, and a (36°, 72°, 72°) triangle, GHC, 
which we call a J-triangle. We shall use the convention Sf to describe an ^-triangle drawn on a 
base Sine segment of length 1/a1', / = 0,1,2,...; similarly, we shall use Tt for the F-triangles drawn 
on such base line segments. 

When making the analyses and calculations, we shall have recourse to the formulas given at 
the beginning of Section 2, and also to the following trigonometric relations: 

| 0 
sm.0 
COS0 
tan0 

36° 
Ja + 2/(2a) 

all 
^Ja + 2/a2 

72° 
(l/2)Va+2 

l/(2a) 
a^/a+2 
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The goldpoint motif triangle, and some partitions of it 
Figure 6(a) is used to demonstrate several partition properties of the goldpoint motif triangle. 

Figure 6(b) shows how the triangle can be partitioned by pentagrams and S-triangles of diminish-
ing sizes and with sides I/a*. Various calculations and comments on these figures are given 
below the diagrams. 

FIGURE 6(a), The motif triangle and some dividing lines 

If AB = 1, then it is immediately seen that ABC is an S0 triangle, which is partitioned by GC 
and HC into two Sx and one T3 triangles (since AC = BC = l/a and GH= 1/a3). Thus, S0 = 
2SXKJT3. 

The area of triangle ABC is (1 / 2) AC sin 36° = Ja + 21 (4a2). 
Other partitions of ABC can be seen in the constructions. For example, the two T3 triangles 

ADG and BJH together with the central pentagon P3 on GH. Another is the set of decreasing and 
overlapping pentagons, on sides CD, DE, EF, ... and, similarly, on the right side of center, whose 
union limitingly fills triangle ABC. 

Finally, we observe that since an ^-triangle can be partitioned into a J-triangle and an ^-tri-
angle (e.g., ABC= AGCvGCB), by repeated divisions ABC can be partitioned into a sequence 
of diminishing ^-triangles; or else, similarly, into a sequence of diminishing T-triangles. We won't 
spell out their relative sizes, but point out that they are all in ratios of powers of a. 

Figure 6(b) demonstrates how the golden motif triangle can be partitioned into an attractive 
double sequence of diminishing pentagrams, with sides in diminishing powers of a, together with 
sequences of diminishing ^-triangles. 

Proposition: Every pentagram vertex (except C) is a double goldpoint with respect to two pairs 
of pentagram vertices. 

Proof: By inspection of the largest pair of pentagrams, and induction. 

FIGURE 6(b). Pentagrams and 5-triangles constructed in the motif triangle 
The complement in AABC of the infinite set of (interiors of) pentagrams is an infinite set S of 

5-triangles, being 3S3 u &S4 u &S5 u • • •. This can be regarded as phase 1 of a fractal. In the next 
phase, every ^-triangle in phase 1 provides a similar figure, all ^-triangles in it being reduced by 
a"3. 
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The dust set of this fractal is the set of all vertices of 5-triangles produced in this multiply-
infinite recurrence process. 

Some properties of the regular pentagon, with goldpolnts and partitions 
The next two figures, 6(c) and 6(d), show regular pentagons, of side 1, with various con-

struction lines upon them. 
In Figure 6(c), AABC is a 2[-triangle, so ^C = l/(2cos72) = a. From AAGD, we get 

AG = l/(2cos54) = aNa + 2 and GD = (l/2)tan54 = a2/2ja + 2. Also, CD = (1/2)tan72 = 
( l / 2 ) W a + 2 . 

By similar pentagons, G'D = a~3GD and G"A = aG' / sin 54 = 2 / Va + 2. 

FIGURE 6(c). A regular pentagon 

Proposition: 
(i) GG = GG". 

(ii) G is a goldpoint of CG*. 

FIGURE 6(d). A fractal of pentagons 

Proof: 

and 

GG' = GB-GfD 
= a2/24aT2-l/(2aJaT2) 
= l / ^ a + 2 (since a 2 - l / « = 2) 

GG" = GA-G"A 

Therefore 

(ii) 

= a/Ja + 2-l/(a4a~+2) 
= \l4a+2 (since a-1/a = 1). 

GGf = GG'f. 

GG*IGC = >GG'IGA 
= (l/-JaT2)^(-JaT2)/a = l/a. 

Other results about goldpoints in a pentagon construction may be found on page 28 in [2]. 
Let us turn to Figure 6(d) and examine the fractal of pentagons. 
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It is evident how Figure 6(d) can be obtained from Figure 6(c). The shaded pentagon P2 is 
replaced by its inner pentagon (a P4\ and then the two small pentagons are replicated around pen-
tagon abode (a?2)-

Looking at Figure 6(d), we see Si^'s and 5P4s arranged alternately with their centers on a 
circle by Proposition (i) above, and with a pentagon P2 in the middle. We can regard this as a 
motif for constructing a fractal of pentagons in the interior of pentagon ABCDE. 

Thus, to arrive at phase 1, we must remove all points in the unshaded regions, together with 
the perimeter of ABCDE. Then, to arrive at phase 2, we repeat the above constructions and 
removals in each of the eleven shaded pentagons. What remains will be 121 shaded pentagons, 
each scaled by a factor of a\ i = 2,3, or 4 according to its construction. From the tree diagram 
below, we see that the distribution of pentagons will then be IP4, 10P5, 35P6, 50P7, 25PS. 

P2^^^ 5P3 5P4 

/l\ /i\ /l\ 
PA 5P5 5P6 P5 5P6 5P7 P6 5P7 5P8 

Evidently, this process can be continued .indefinitely. And formulas can be computed for the 
coefficients on the tree and for reduction factors in areas when passing from phase / to phase i +1. 

The dust set of the fractal is the set of points in ABCDE which are not removed by this 
infinite process. A moment's thought shows that this set consists of the centers of all the 
pentagons constructed in the 'whole' process. And the set consists of a cosmos of points arranged 
in circles, with similar, reduced, circles arranged around each of them, and so on ad infinitum. 
Because of the similarity of this system with Ptolomy's model of the Universe, we name this dust 
set the Ptolomak dust set. 

The next two figures show phases of the interior and exterior fractals which are constructed 
on a regular pentagon using the goldpoint motif on its sides. 

Phase 2 of Figure 6(e) shows an attractive clover-leaf arrangement of five leaves, each of 
three P3 pentagons, formed in P2$ and arranged around a central P2. 

Phase 4 shows clearly how the interior goldpoint fractal of a regular pentagon is equal to the 
exterior goldpoint fractal of its pentagram. 

FIGURE 6(c). Interior goldpoint fractal of a pentagon (phases 2, 3, and 4) 
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It is clear from the phase 1 diagram of Figure 6(f) that the exterior goldpoint fractal of a 
regular pentagon is bounded by a regular pentagon. It is easy to prove this using angle values of 
the iS- and T-triangles which touch the boundary. We believe this property of a von Koch-type 
fractal having a bounding polygon which is similar to the generating polygon to be unique. 

phase. 1 phase 2 
(with two (with four phase 3 
unicursals) unicursais) 

FIGURE 6(f). Exterior goidpnimt fractal ©fa pentagon (phases 1, 29 and 3) 
A final interesting comment is the following: the sharp boundary points in the phase 1 dia-

gram can be connected by a unicersal polygon of chords of the diagram (each chord begins and 
ends along an arm of a point-angle), whereas the sharp boundary points of the phase 2 diagram 
require two such unicersal polygons to join them all up. In phase w, there will be 2n unicursal 
polygons required. The unicursal perimeters can be calculated in terms of a, given that P0 has 
side length 1. For example, in Pu the unicursals have perimeters 5 and 5(7 - 3a), respectively. 
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