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1. INTRODUCTION 

Let {an}^_ao be a sequence which satisfies a linear recurrence of order k +1. We are herein 
concerned with the lacunary subsequences {®mn+b}Z=-ao> where m and b are fixed integers, so 
called because they consist of the terms from {aJ with lacunae, or gaps, of length m between 
them. In [5], [2], and [3] it has been shown that, for any m and A, the subsequences {amn+b} also 
satisfy a linear recurrence of order k + l. In this note we shall express the coefficients of this 
recurrence in terms of generalized Dickson polynomials, by means-of their functional equations, 
and present some applications of this description. As corollaries to our main theorem we give 
generalizations, to prime power moduli, of the known result ([5], Theorem 4) that whenever/? is 
prime, the subsequences { a ^ ^ } ^ satisfy the same linear recurrence modulo p as is satisfied by 
{an}. We conclude with an analog of Howardfs tribonacci identity ([3], Theorem 3.1) for 
tetranacci sequences. 

2. THE MAIN RESULT 

Let our sequence {an} satisfy a linear recurrence of order k +1, say 

where a is a unit in some integral domainR and x1? x^,..., x̂  are indeterminates over R. (By use 
of evaluation homomorphisms R[xl9..., xk} -> R9 one may also regard x1? x^,..., xk as elements of 
R). If we are given some initial conditions, say a0,a1?...,% ei?[xl5..., xk\ then the recurrence 
(2.1) may be used to define an for all integers #i, and for any integer b we have a formal power 
series identity 

in the formal power series ring i?[xl5 x2,..., JCJ[7]|, where 

P(T) = 1 - x{r+x2T2 + • • • + (~l)kxkI* - (~lfaTM (2.3) 

is the characteristic polynomial of the recurrence (2.1) and Q(T) is some polynomial of degree at 
most k 

Now let K be the quotient field of the polynomial ring R[xh x2,..., xk]. Then over some finite 
extension field Z of K the polynomial P(T) splits into the product 

P{T) = f[{\-ajT). (2.4) 
7=0 

It follows that Xj = crj(a09...,ak) for 1 < j<k and a = crk+l(aQ,...,ak), where aj denotes the 
j * elementary symmetric fijnction in k +1 indeterminates. 
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For l<i<k9 let P«(7) be the polynomial in R[xl9...9xkJT} of degree !=(kf) with 
constant term 1 whose reciprocal roots are all products of the form ccj ... ctj , where 0 < jx < • • • 
<jt<k. The coefficients of P(l) are symmetric functions of a0,.. . ,ak9 and therefore there are 
polynomials yj$i in R[xh..., x j such that 

P«(7) = 1 - ^ , 7 + ^ , 7 * +... + ( - 1 ) % ^ , (2.5) 

with yhi = xt and yu = d. The generalized Dickson polynomials Djp (over J?) are then defined 
for m > 0 by the expansion 

^ = -fjDV\Xl,...,Xk,a)r»^ (2.6) 

in R{xh...,xk]lTl (cf. [6], eq. (1.6)). The usual Dickson polynomials Dm(x9a) are obtained in 
this way from P(T) = 1-xT-haT2 with i = * = 1, and if R is a finite field then this definition of 
generalized Dickson polynomials agrees with that given in [4]. From the generating form (2.6), 
we may derive for m > 0 the functional equations (cf. [6], eq. 2.5)) 

D$(xl,...,xk,a) = at(a™,...,a>Z) 0 ^ * ) (2.7) 

and the identity am = a™a™ ...a™. These relations may be used to define the polynomials 
D$(xh ...9xk9a)e R[xh..., xk] for all integers m; specifically, we have 

DPix^^x^a)^^ (2.8) 

for m = 0, and for any integer m we have 

D<?(xh.... xk, a) = amD^{xh..., xk, a), (2.9) 

where i + j = k +1. With this definition, the polynomial D$ is a polynomial of total degree \m\ in 
R\xl9..., xk] for every integer m. Now we are ready to state the main theorem. 

Theorem 1: Let {an} satisfy the linear recurrence (2,1) in R[xl9..., xk"]. Then, for any integers m 
and b9 the lacunary subsequence {amn+b} in R[xl9..., JCJ satisfies the recurrence 

Proof: Let m and 6 be given. If m = 0, the statement of the theorem reduces to the very 
well-known identity 

kf(-iy(ktl)=Q <2-10) 
-by (2.8). Assuming the theorem is true for m9 it follows also for -in by (2.9); therefore, it suffices 
to assume m is positive. Consider the generating function (2.2) for the sequence {an+b}. Define 
the linear operator <p on R[xh..., x j T ] by 

^ / ( i ) = 1 ( / ( r ) + / ( ^ + / ( ^ T ) + « - + / ( ^ 1 r ) ) ( i n ) 

where 0 is a primitive nfl* root of unity in some finite extension ofK. Since 
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^Hr nsz1- a.* we have 

( l ^ ] = I«W*~\ (2-13) 
Vf=0 / «=0 

which Is the generating function for our lacunary subsequence. 
By virtue of the factorization (2.4), we have a partial fraction decomposition 

m=:y_ja (214) 

valid as a power series identity in the subring R[xl9 ..., x j [ 7 | <of LIT}, where the exponents are 
defined by setting ei equal to 1 plus the number of a7- with otj = af and j < i (so, e.g., all ei are 1 
if and only if all ai are distinct). Then we compute in L{6)\T\ 

JomVlyy s -Ay y ^ _ 

= i f Q<n = &D 
w S O - o / T T P(F") ' 

with each Q a polynomial of degree less than e,, and 0 therefore a polynomial of degree at most 
k. It follows by comparison with (2.13) that P is the characteristic polynomial for the recurrent 
sequence {amn+b}, where P(Tm) = nf=00 - afT"). If we write 

P{T) = l-yiT+y2T2
 + ...+(-lfykTk-{-\fyk+lTk+\ (2.16) 

then we have yt = cri(a™9..., a J) for 1 < i < * and j ^ + 1 = a^af ... a™. Hence, by the functional 
equations (2.7), we have yj = / ^ (x j , . . . , x^, a) for 1 <i < k and jk+1 = am

y giving thq result. 

Remarks: In Theorem 1 we have assumed a is a unit in R; however, this assumption is needed 
only to ensure that an and £$ are elements of R when n is negative. The recurrence given in the 
theorem remains valid in R\xl9 ...,xfc] if a is an arbitrary element of R (even if a = 0), or in 
R[xl9..., x^, a] if a is regarded as an indeterminate over J?, provided b>m>0. It is equally valid 
for arbitrary integers m and 6 if interpreted as a recurrence in the Laurent ring R[xh..., xk, a, a- 1]. 

3* CONGRUENCES FOR LACUNARY RECURRENCES 

It is known ([5], Theorem 4) that, if {aj^o 'ls a linearly recurrent sequence in Z and p is 
prime, then the subsequence {®prn+b}™=0 satisfies the same linear recurrence modulo/? as is satis-
fied by {aj. Theorem 1 and results of [6] give rise to some generalizations of this result. 

Corollary 2: Let {a„}|JLo satisfy a linear recurrence 

in R[xh..., xk9 a], and let « } ^ = 0 satisfy the linear recurrence 

<+k=«+ik-i - ̂ <+M+• • • - ("if4<+H)^X-i 
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in R[xl9..., xk,a]. Then for any prime/? and any positive integers b, d9 m, and r, the two lacunary 
subsequences {ampr„+b}™=o and {af

mpr-in+d}^=0 in R[xl9..., xk9a] satisfy the same recurrence modulo 
prR[xl9...9xk9a]. 

Proof: In Theorem 2 of [6], we showed that the differential form (2.6) is an invariant dif-
ferential on the multiplicative formal group law over the polynomial ring R[xh...,xk,a], from 
which one may deduce the congruences 

Z ^ ( * i , ...,**,*) = Z ^ i ^ (3.1) 

in R{xh...9xk9a]. Since ampr =(ap)mpr~l
9 the corollary then follows from Theorem 1 and the 

observation that the left members of the congruences (3.1) are the coefficients of the recurrence 
for {amjfn+b} and the right members of the congruences (3.1) are the coefficients of the recurrence 
fcr{a^-w}. 

Taking m = r = 1 in the above Corollary 2 yields a polynomial congruence which implies 
Theorem 3 of [5] and the main result of [1]. We now consider another generalization. 

Corollary 3: Let {an}^L0 satisfy the linear recurrence 

in Z. Then, for any prime/? and any positive integers b9 d9 m9 and r9 the two lacunary subsequen-
ces {amprn+b}™=o and {ampr~in+d}^Q 'm Z satisfy the same recurrence modulo pr. 

Proof: In Theorem 3 of [6], we showed that, for any integers xi9..., xk9a9 the differential 
form (2.6) is an invariant differential on the multiplicative formal group law over Z, from which 
one may deduce the congruences 

D%,(*i,•••>Xk,°)• D%r*(n>•••>*k>a) (mod/^Z) (3.2) 

for any integers xl9...9xk9a. Since ampr = ampr~l (mod jf\ the corollary then follows from Theo-
rem 1 and the observation that the left members of the congruences (3.2) are the coefficients of 
the recurrence for {amifn+b} and the right members of the congruences (3.2) are the coefficients of 
the recurrence for {ampr-in+d}. 

The r = 1 case of this theorem contains the result of [1] and Theorems 3 and 4 of [5]. To 
illustrate the general case, consider the example of the tribonacci sequence {PJ defined by the 
recurrence 

^ + 2 = ^ + i + ^ + ^ - i (3.3) 

with PQ9 Pl9 P2 arbitrary integers. As a special case of Theorem 1, we have Howard's general 
formula (see [3], eq. (3.6)) for the lacunary subsequences {Pmrs^} which implies, for example, 

Pn+4 = 3̂ w+2 + Pn + *n-2 9 P -4) 

^ 8 = 1 ^ 4 + 5 ^ + ^ - 4 , (3.5) 

^ 1 6 = 1 3 1 ^ - 3 ^ + ^ 8 , (3.6) 

^ + 3 2 
= 17155/>„+16 + 253PB + P„_16. (3.7) 

44 [FEB. 



ON LACUNARY RECURRENCES 

We observe that the recurrence coefficients in (3.3) and (3.4) agree modulo 2, while those in (3.4) 
and (33) agree modulo 22, those in (3.5) and (3.6) agree modulo 23, and those in (3.6) and (3.7) 
agree modulo 24, as predicted by Corollary 3 for p = 2. For p = 3 one has 

^ = 7 ^ 3 - 5 ^ + ^ 3 , (3-8) 
i^+18 = 241/j^ -23/> + Pn_9, (3.9) 

Pn+54 = 13980895/^ +4459PH +P,_275 (3.10) 

with the recurrence coefficients in (3.3) and (3.8) agreeing modulo 3, those in (3.8) and (3.9) 
agreeing modulo 32, and those in (3.9) and (3.10) agreeing modulo 33. Once more, 

^ 1 0 = 2 ^ 5 + ^ + ^ ^ 5 , (3.11) 
Pn+50 = 4132721Pw+25 +2201PW + PW_25, (3.12) 

with the recurrence coefficients in (3.3) and (3.11) agreeing modulo 5, and those in (3.11) and 
(3.12) agreeing modulo 52. 

The system of congruences (3.2) implies that {D^r(xl9..., xk9a)}™=0 is a Cauchy sequence in 
the ring Zp of/?»adic integers for fixed xl3 ...,x2, a, m9 i, and any prime/?, and therefore con-
verges /radically to some limit H%\ Combining Theorem 1 with the complete statement of 
Theorem 3 in [6] therefore allows a/?-adic restatement of Corollary 3. 

Corollary 3 (alternate version): Let {^}^=0 satisfy the linear recurrence 

in Z and let/? be any prime. Then, for any positive integer m9 there exist algebraic integers Hj£\ 
...9H%\ A^ in ZP9 which depend only on %..., xk9 a (mod/?), such that the lacunary subsequen-
ces {bj = {amprn+d} satisfy 

bn+k - i 4 \ ^ - i " ^ ( m o d ^ Z p ) 

for all nonnegative integers r and d. 

"This version of the corollary says that associated to any integral linear recurrent sequence 
{an)n=o t ^ e r e 'ls> ̂ or e a c e positive integer m and each prime p9 a single recurrence (with p-adic 
coefficients) that is satisfied modulo pr+lZp by every lacunary subsequence {amprnHi}Z*0' ^ S a e 

illustration of the idea, from (3.7), we note that the recurrence 

6Jlt2 = 1715»Ji+1+25»JI+ftJi.i (3-13) 
is satisfied modulo 2r+l by {bj = {/£*•„+</} for r = 0,1,2,3,4; analogous examples of this type for 
lacunary subsequences of {PJ are given by (3.10) for p = 3 and r = 0,1,2,3, and by (3.12) for 
p = 5 and r = 0,1,2. A natural question to ask is: When will the "universal" /?-adic recurrences of 
the corollary, which hold for all r9 actually have integer coefficients? 

This question may be answered to some extent in the case of second-order recurrences 
(k = 1) using the results of [7], where systems of congruences 

Bg>(x9d) = B (mod//*1) (3.14) 
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for integer values of B were classified. In particular, combining Theorem 1 of the present paper 
with Theorem 1 of [7] yields the following corollary. 

Corollary 4: Let {aj^o satisfy the second-order linear recurrence 

for integers x and a. Then, for every prime p9 there exists an integer m and integers Hm and A^ 
such that the recurrence 

*«+l = **trPn ~ ArPn-l 

is satisfied modulo pr+l by the lacunary subsequence {bn} = {amprn+d} for all nonnegative integers 
r and d. Furthermore, Hm e {-2, -1,0,1,2} and 4 , e {-1,0,1}. 

The means for determining the integers m, /fm, and 4» a r e outlined in the corollary to Theo-
rem 2 of [7], A few examples involving the Fibonacci sequence {Fn} are: 

Fn+m.r - - F n - F ^ r (mod2^) if 3/ar, (3.15) 

^ - 2F. - ^ . . r (mod2r+1) i f 3 I ^ (3'16> 

^ . a ^ - ^ . y (mod3'+1) if ni 3£Z (mod 8); (3.17) 

F ^ B - ^ - F ^ (modS^1) if *i « 2 (mod4); (3.18) 

Fn+m.r a " ^ . r (mod7^+1) if m s ±4 (mod 16). (3.19) 

4. TETKANACCI SEQUENCES 

In Theorem 2.1 of [3], Howard showed that if {aj satisfies the recurrence (2.1) over C 
then, for any integers m and b9 the lacunary subsequence {amn+b} satisfies the recurrence 

£+1 

where the numbers cmJm are independent of the initial conditions a0, al9..., %? and are defined by 
a certain generating function. The identity cm>ik+t)m =am was shown in Lemma 2.2 of [3]; the 
result of Theorem 1 above shows that cmJm = D^'\xh..., xk9 a) for 1 < j < k. In the tribonacci 
case (k = 2), Howard showed (see Lemma 3.2 of [3]) that cm m = Dm and cm 2w = a m H w , where 
Dm = D^C^, x2, a). This produces the beautiful identity (cf, [3], eq. (1.5)) 

an+2m = Dman+m~-amD^n +ama^m9 (4.2) 

which is valid for all integers m and n; observe that {am} and {Dm} satisfy the same third-order 
recurrence. We remark that the two identities of Lemma 3.2 in [3] are generalized to arbitrary k 
by (2.9) and Theorem 1; specifically, we have 

Cm.m=Dm m d Cm.km = <*" D_m9 (4.3) 

where Dm = Djp(xh ...9xk9a). Iii the tetranacci case (k = 3), equation (4.3) expresses all but the 
central coefficient cmt2m in terms of a and Dm. Whereas {am} and {Dm} both satisfy the same 
fourth-order recurrence, this central coefficient {cmt2m} unfortunately satisfies a recurrence of 
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order (J) = 6. This suggests that perhaps there is no general simple analog of (4.2) for recurrences 
whose order exceeds three. However, by means of the functional equations (2.7), one may easily 
verify that cm2m = D^\xl9 ...,xk,a) = (Dl-D2m)l2 over any integral domain R of characteristic 
not equal to 2. Therefore, we may state the following analog of Theorem 3.1 in [3] for tetranacci 
sequences. 

Theorem 5: Let {an) satisfy the linear recurrence 

in i?[x1? x2, x3], where, the characteristic of the integral domain R is different from 2 and a is a unit 
in R. Then, for any integers m and n, we have the identity 

a„+3m = Dman+2m-2(Dm~D2mK+m +amD_man~aman_m 

in R[xh x2, x3], where Dm = DJPfa, x2, x3, a). 
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