AN INVOLUTORY MATRIX OF EIGENVECTORS

David Callan

Department of Statistics, University of Wisconsin-Madison 1210 W. Dayton Street, Madison, WI 53706-1693

Helmut Prodinger

The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of the Witwatersrand P.O. Wits, 2050 Johannesburg, South Africa
(Submitted February 2001-Final Revision May 2001)

1. INTRODUCTION

A matrix with a full set of linearly independent eigenvectors is diagonalizable: if the n by n matrix A has eigenvalues λ_{j} with corresponding eigenvectors $u_{j}(1 \leq j \leq n)$, if $U=$ $\left(u_{1}\left|u_{2}\right| \ldots \mid u_{n}\right)$ and $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, then U is a diagonalizing matrix for $A: U^{-1} A U=$ D. Taking transposes shows that $\left(U^{-1}\right)^{t}$ is a diagonalizing matrix for A^{t}. Hence U^{t} itself is a diagonalizing matrix for A^{t} if U^{2} is the identity matirx, or more generally, due to the scalability of eigenvectors, if U^{2} is a scalar matrix.

The purpose of this note is to point out that the right-justified Pascal-triangle matrix $R=$ $\left.\binom{i-1}{n-j}\right)_{1 \leq i, j \leq n}$ is an example of this phenomenon. Let a denote the golden ratio $(1+\sqrt{5}) / 2$.

The eigenvalues of R^{t} (which of course are the same as the eigenvalues of R) were found in [1]: $\lambda_{i}=(-1)^{n-i} a^{2 i-n-1}, 1 \leq i \leq n$. The corresponding eigenvectors u_{i} of R^{t} were also found in [1] (here suitably scaled for our purposes): $u_{i}=\left(u_{i j}\right)_{1 \leq j \leq n}$ where

$$
u_{i j}=(-a)^{n-j} \sum_{k=1}^{j}(-1)^{i-k}\binom{i-1}{k-1}\binom{n-i}{j-k} a^{2 k-i-1} .
$$

Let $U=\left(u_{i j}\right)_{1 \leq i, j \leq n}$.
For example, when $n=5$,

$$
R=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1
\end{array}\right) \text { and } U=\left(\begin{array}{ccccc}
a^{4} & -4 a^{3} & 6 a^{2} & -4 a & 1 \\
-a^{3} & 3 a^{2}-a^{4} & -3 a+3 a^{3} & 1-3 a^{2} & a \\
a^{2} & -2 a+2 a^{3} & 1-4 a^{2}+a^{4} & 2 a-2 a^{3} & a^{2} \\
-a & 1-3 a^{2} & 3 a-3 a^{3} & 3 a^{2}-a^{4} & a^{3} \\
1 & 4 a & 6 a^{2} & 4 a^{3} & a^{4}
\end{array}\right) .
$$

Since the rows of U are eigenvectors of R^{t}, U^{t} is a diagonalizing matrix for R^{t}. By the first paragraph applied to $A=R^{t}, U$ will be a diagonalizing matrix for R if we can show that

AN INVOLUTORY MATRIX OF EIGENVECTORS

$\left(U^{t}\right)^{2}$ (equivalently U^{2}) is a scalar matrix. We now proceed to show that $U^{2}=\left(1+a^{2}\right)^{n-1} I_{n}$ and in fact this holds for arbitrary a. We use the notation $\left[x^{k}\right] p(x)$ to denote the coefficient of x^{k} in the polynomial $p(x)$. Consider the generating function $U_{i}(z)=z(z-a)^{n-i}(a z+1)^{i-1}$. Using the binomial theorem to expand $U_{i}(z)$, it is immediate that

$$
U_{i}(z)=\sum_{j=1}^{n} u_{i j} z^{j}
$$

Now the (i, k) entry of U^{2} is

$$
\begin{aligned}
\left(U^{2}\right)_{i k} & =\sum_{j=1}^{n}\left[x^{k-1}\right](x-a)^{n-j}(a x+1)^{j-1} \cdot\left[z^{j-1}\right](z-a)^{n-i}(a z+1)^{i-1} \\
& =\left[x^{k-1}\right] \sum_{j=1}^{n}\left[z^{j-1}\right](x-a)^{n-j}(a x+1)^{j-1}(z-a)^{n-i}(a z+1)^{i-1} \\
& =\left[x^{k-1}\right](x-a)^{n-1} \sum_{j=1}^{n}\left[z^{j-1}\right]\left(\frac{a x+1}{x-a}\right)^{j-1}(z-a)^{n-i}(a z+1)^{i-1} \\
& =\left[x^{k-1}\right](x-a)^{n-1} \sum_{j=1}^{n}\left[z^{j-1}\right]\left(z \frac{a x+1}{x-a}-a\right)^{n-i}\left(a z \frac{a x+1}{x-a}+1\right)^{i-1} \\
& =\left[x^{k-1}\right](x-a)^{n-1}\left(\frac{a x+1}{x-a}-a\right)^{n-i}\left(a \frac{a x+1}{x-a}+1\right)^{i-1} \\
& =\left[x^{k-1}\right]\left(a x+1-a x+a^{2}\right)^{n-i}\left(a^{2} x+a+x-a\right)^{i-1} \\
& =\left[x^{k-1}\right]\left(1+a^{2}\right)^{n-i} x^{i-1}\left(1+a^{2}\right)^{i-1} \\
& =\left[x^{k-i}\right]\left(1+a^{2}\right)^{n-1} \\
& =\left(1+a^{2}\right)^{n-1} \delta_{k i},
\end{aligned}
$$

as desired.

ACKNOWLEDGMENTS

The second author H. Prodinger is supported by NRF grant 2053748.

AN INVOLUTORY MATRIX OF EIGENVECTORS

REFERENCES

[1] R.S. Melham and C. Cooper. "The Eigenvectors of a Certain Matrix of Binomial Coefficients." The Fibonacci Quarterly 38.2 (2000):123-26.

AMS Classification Numbers: 11B65, 15A36, 15A18
国

