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1. S T A T E M E N T O F T H E R E S U L T S 

A famous result of Heilbronn states that for every real irrational £ and any e > 0 there 
are infinitely many integers n satisfying 

II £n 2 | |< * 
n l / 2 - e " 

Here || • || denotes the distance to the nearest integer [3]. In view of our results below we 
reformulate Heilbronn's theorem as follows: There are infinitely many pairs of integers ra, k 
where m is a perfect square such that the inequality 

\Sm-k\< - ^ 

holds. 
The Pythagorean numbers x,y,z with x2 + y2 = z2, where additionally x and y are 

coprime, play an important role in number theory since they were first investigated by the 
ancients. It is well-known that to every Pythagorean triplet x,y3z of positive integers satisfying 

x2 + y2 = z2, (ar,y) = l, x = 0 mod 2 (1.1) 

a pair of positive integers a, b with a > b > 0 corresponds such that 

x = 2ab, y = a2-b2, z = a2 + ft2, (o,6) = 1, a + b = 1 mod 2 (1.2) 

hold ([2], Theorem 225). Moreover, there is a (1,1) correspondence between different values 
of o, b and different values of x, y, z. The object of this paper is to investigate diophantine 
inequalities \£y — x\ for integers y and x from triplets of Pythagorean numbers. Since x2 + y2 

is required to be a perfect square - in what follows we write x2 + y2 € • - we have a essential 
restriction on the rationals x/y approximating a real irrational £. So one may not expect 
to get a result as strong as Heilbronn's theorem. Indeed, there are irrationals £ such that 
\iy — x\ ^$> 1 holds for all integers x, y satisfying x2 + y2 E D . But almost all real irrationals £ 
(in the sense of the Lebesgue-measure) can be approximated in such a way that |fy — x\ tends 
to zero for a infinite sequence or pairs x, y- corresponding to Pythagorean numbers. In order to 
prove our results we shall make use of the properties of continued fraction expansions. By our 
first theorem we describe those real irrationals having good approximations by Pythagorean 
numbers. 
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T h e o r e m 1.1: Let £ > 0 denote a real irrational number such that the quotients of the 
continued fraction expansion of at least one of the numbers rji := £ + \ A 4- £2 and ^2 := 
(1 + y 1 + £2)/£ are not bounded. Then there are infinitely many pairs of positive integers x, y 
satisfying 

|fp -x\ = o(l) and x2 + y2 E • . 

Conversely, if the quotients of both of the numbers r/i and ^2 @>re bounded, then there exists 
some 8 > 0 such that 

\€v ~ x\ > 8 
holds for all positive integers x, y where x2 + y2 E D . 

It can easily be seen that the irrationality of £ does not allow the numbers TJI and ^2 to 
be rationals. The following result can be derived from the preceding theorem and from the 
metric theory of continued fractions: 
Coro l la ry 1.1; To almost all real numbers £ (in the sense of the Lebesgue measure) there are 
infinitely many pairs of integers x ^ 0, y > 0 satisfying 

|f y - x \ = o(l) and x2 + y2 E • . 

Many exceptional numbers £ not belonging to that set of full measure are given by certain 
quadratic surds: 
Coro l la ry 1.2; Let r > 1 denote some rational such that£ := sjr2 — 1 is an irrational number. 
Then the inequality 

\ty-x\>8 (1.3) 
holds for some 8 > 0 (depending only on r) and for all positive integers x, y with x2 + y2 E D . 

The lower bound 8 can be computed explicitly. The corollary follows from Theorem 1.1 
by setting £ := \/r2 — 1. 

Talking r = 3/2, we conclude that f = V5/2 satisfies the condition of Corollary 1.2. 
Involving some refinements of the estimates from the proof of the general theorem, we find 
that (1.3) holds with 8 = 1/4 for £ = y/H/2. 

Finally, we give an application to inhomogeneous diophantine approximations by Fibonacci 
numbers. Although \yy/E/2 — x\> 8 holds for all Pythagorean numbers x,y, this is no longer 
true in the case of inhomogeneous approximation. By the following result we estimate \£y — 
x — rj\ for infinitely many Pythagorean numbers x and y, where £ and 77 are given by F&<\/5/2 
and ±F2k/V§i respectively, for some fixed even integer k. 
T h e o r e m 1.2; Let k > 2 denote an even integer. Then, 

0 < ^ ? . (2FnFn+k) - FkF2n+k + ( - i ) n ^ § < 2 2 " + 1 

va 5(1 + vE)2n 

holds for all integers n > 1, and we have 

(2FnFn+k)2 + (FkF2n+k)2 G • (n > 1). 
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.2. P R O O F O F T H E O R E M 1.1 

It can easily be verified that ^i > 1 and rfe > 1- One gets r}2 by substituting l / £ for £ in 
r}\. First we assume that the sequence ao,ai ,a2, - - • of quotients from the continued fraction 
expansion r}i = (aol fli,«2,...) is not bounded. lipn/qn denotes the nth convergent of r/i, the 
inequality 

Pn < 
Un+lQu 

(n > no) (2.1) 

holds, where no is chosen sufficiently large. There exists some positive real number f3 such 
that 7/i = l + 2/3; particularly we have rji > (1 + /3)(1 + l/pn) for n > UQ. By r}iqn — pn < 1, 
one gets 

. Pn + 1 . Pn ( . x 
(In < —z— < i , Q {n > no). m 1 + fi 

(2.2) 

Let 

/(*):=e-i(*-i) <*̂ )-

By straightforward computations it can easily be verified that 

f(m) = o. (2.3) 

For any two real numbers ti,t2 satisfying 1 < ti < £2 there is some real number a with 
ti < a <t2 such that 

l/(*a)-/(*i)l = l/'(«)H*2-*il 
holds. In the case when n is even let t\ — pn/qn and £2 = ?/i, otherwise put t\ = r/i, £2 = pn/qn-
Thus, for any even index n > no we have fji > a > pn/qn > 1? where the lower bound 1 follows 
immediately from r}\ > 1 and from (2.1). For any odd index n it is clear that a > TJI holds. 
Therefore one gets 

*»>-'®l = K1+;?) Vi 
Pn_ 
Qn 

where 
a > 1 (n > no). 

Applying (2.1), (2.3), and the definition of/ , the inequality takes the form 

(2.4) 

J^_M|<f1+M_J_. 
2 \qn Vn)\ \ a2J2an+iql 
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Put x := p 2 — g2, y := 2pnqn. For n tending to infinity the positive integers pn are not 
bounded, therefore we get infinitely many pairs x3y of positive integers. By (2.2), x > 0 holds 
for all sufficiently large indices n. Putting x and y into the above inequality and applying 
(2.4), we get 

e- < 
<*n+l9n 

4f* 
2 J (2.5) 

where x2 + y2 = (p2 + g2)2 G D- Using (2.2), we compute an upper bound for p 2 on the right 
side of (2.5): p2

n = x + q2
n < x + p2J(l + /?)2, or, p2

n < (1 + 0)2x/0{2 + fi) < (1 + / ? )V2/3 
for n > no- Moreover, (2.5) gives |£y — x\ < y, from which the estimate a? < (1 + 0 y follows 
immediately. Altogether we have proved that infinitely many pairs of positive integers x^y 
with x2 + y 2 E D exists such that 

< 
2(l + 0 ( l + i g ) 2 

holds, where any pair a;, y corresponds to some n. Finally, we restrict n on integers from a 
subsequence corresponding to monotonously increasing partial quotients an+\. For n tending 
to infinity, the assertion of the first part of the theorem concerning 171 follows from 

Ify - A < 
2(1+ 0 ( 1 +/J) 2 

@an +1 

Next, if the sequence of quotients from the continued fraction expansion of rfe is not 
bounded, we get by the same method infinitely many pairs x, y of integers (where y is even) 
satisfying x2 + y2 G • and 

— x < 
2(1 + 1 / 0 ( 1 + /3)2 

fian. 4-1 
(2/3 := ij2 - 1, m = (oo; fli, «2, - - - ))• 

This inequality can be simplified by 

\&~y\< 
2(1 + 0(1 + 0)* 

0an + i 

which completes the proof of the first part of the theorem. 
In order to show the second part we now assume that both numbers, r/i and j/2> have 

bounded partial quotients. It suffices to prove 

Ifr - x\ > S (2.6) 
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for coprime Pythagorean integers x and y : if \£y — x\ < 8 for (x,y) > 1, one may divide the 
inequality by (x,y). Then we get a new pair of coprime integers with 

(Jay + (JLJ\ 
\(x,y)J \(x,y)J 

en, 

which contradicts (2.6). Prom the hypothesis on 771 we conclude that there is some positive 
real number Si satisfying 

•Hi > 
Si 
b2 (2.7) 

for all positive coprime integers a and b. 
The first assertion we shall disprove states that there are infinitely many pairs of positive 

coprime integers x, y such that 2\y, x2 + y2 E D, and 

| £ 0 - * | < * i O f t - l ) - (2.8) 

By (1.1) and (1.2) we know that to every pair x,y two integers a, 6 correspond such that 
y = 2aft, x = a2 —b2

7 a > 6, (a, b) — 1, and a + 6 = 1 mod 2. Again we denote by f(t)(t > 1) 
the function defined above. Using fji > 1 and a/b > 1 it is clear that f'(t) is defined for all 
real numbers which are situated between r/i and a/b. Therefore, corresponding to a and 6, a 
real number a exists satisfying 

( a _ m). (a _ « ) < o and |/(ifc) - / ( £ ) | = I J » l Vi 

By (2.3) we find that 

V t- 2ab =K1+^) m- (2.9) 

In what follows it is necessary to distinguish two cases. 
Case 1: |r/i — a/b\ > 1. 

Using l / « > 0, we conclude from (2.9) that \£y — x\ > y/2. For all sufficiently large 
integers y this contradicts to our assumption from (2.8). 
Case 2: 1% - a/b\ < 1. 

First, it follows from this hypothesis that b < a/(fit — 1). Next, we estimate the right side 
of (2.9) by the inequality from (2.7): 

e - X jh_ <?I(T/I -
262 2oft 

1) 
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Consequently we have, using y = 2a65 

|€y - a | > t f i ( T f t - l ) , 

which again is impossible by our assumption. So we have proved that there are at most finitely 
many pairs x, y of positive coprime integers satisfying 2\y, x2 + y2 G D, and 

|&-*|<*ifai-i)- (2.10) 

Since we may assume that the partial quotients of the number ife are also bounded, we get 
a similar result concerning the approximation of l /£ : There are at most finitely many pairs 
x, y of positive coprime integers with 2|y, x2 + y2 E D, and 

— x < $2(r}2 ~ 1 ) , (2.11) 

where 82 denotes some positive real number satisfying 

!»-£ > b2 

for all coprime positive integers a and 6. Since £ is positive, the inequality from (2.11) can be 
transformed into 

which is satisfied at most by finitely many coprime Pythagorean numbers x3y with 2\y. By 
(2.10) we complete the proof of the theorem. 

X P R O O F O F T H E O R E M 1.2 

L e m m a 3.1: Let k > 2 and n>l denote integers, where k is even. Then one has 

Fn+k - F n = FkF2n-i-k 

and 

(3.1) 

(2FnFn+k)2 + (FkF2n+k)2 E a (3.2) 

Proof: Throughout this final section we denote the number (1 + -\/5)/2 by p. We shall 
need Binet's formula 

Fm = ±,(pm-t-^-) (m>l). 
V5 V Pm 

(3.3) 

Since k is assumed to be even, one gets from (3.3): 

m + k - **) = (p-+fc - ^ S ) 2 - (P» - {-=f-)' 
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= (pk ~ £ ) • (p2n+k ~ ^s) = w**W 

This proves (3.1). Then the second assertion of the lemma follows easily, since one has 

(2FnFn+k)2 + (FkF2n+kf = {2FnFn+kf + (Fn
2

+fc - Fn
2)2 = (Fn

2
+fc + Fn

2)2 G Q 

Binet's formula (3.3) is a basic identity which also is used a several times to prove the 
inequalities in Theorem 1.2. Since k > 2 is assumed to be an even integer, one gets 

V5FkFnFn+k - FkF2n+k + ( - 1 ) " % 

=K'-?)-(',-^)-('"-££)-
-K'-?)-('~-?M+fc£(',-?0 

5 V P2kJ P2n' 

It follows that the term on the left side represents a positive real number, which is bounded 
by 2/5p2n. By (3.2) from Lemma 3.1, this finishes the proof of the theorem. 
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