GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Gwang-Yeon Lee

Department of Mathematics, Hanseo University, Seosan 356-706, Korea

Jim-Soo Kim

School of Electrical and Computer Engineering, SungKyunKwan University
Suwon 440-746, Korea

Tae Ho Cho

School of Electrical and Computer Engineering, SungKyunKwan University Suwon 440-746, Korea
(Submitted January 2001-Final Revision May 2001)

1. INTRODUCTION

We consider a generalization of the Fibonacci sequence which is called the k-Fibonacci sequence for a positive integer $k \geq 2$. The k-Fibonacci sequence $\left\{g_{n}^{(k)}\right\}$ is defined as

$$
g_{0}^{(k)}=g_{1}^{(k)}=\cdots=g_{k-2}^{(k)}=0, \quad g_{k-1}^{(k)}=1
$$

and for $n \geq k \geq 2$,

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}
$$

We call $g_{n}^{(k)}$ the $n^{t h} k$-Fibonacci number. For example, if $k=2$, then $\left\{g_{n}^{(2)}\right\}$ is the Fibonacci sequence $\left\{F_{n}\right\}$. If $k=5$, then $g_{0}^{(5)}=g_{1}^{(5)}=g_{2}^{(5)}=g_{3}^{(5)}=0, g_{4}^{(5)}=1$, and the 5 -Fibonacci sequence is

$$
\left(g_{0}^{(5)}=0\right), 0,0,0,1,1,2,4,8,16,31,61,120,236,464,912, \ldots
$$

Let E be a 1 by $(k-1)$ matrix whose entries are ones and let I_{n} be the identity matrix of order n. Let $\mathrm{g}_{n}^{(k)}=\left(g_{n}^{(k)}, \ldots, g_{n+k-1}^{(k)}\right)^{T}$ for $n \geq 0$. For any $k \geq 2$, the fundamental recurrence relation, $n \geq k$,

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}
$$

can be defined by the vector recurrence relation $g_{n+1}^{(k)}=Q_{k} g_{n}^{(k)}$, where

$$
Q_{k}=\left[\begin{array}{cc}
0 & I_{k-1} \tag{1}\\
1 & E
\end{array}\right]
$$

We call Q_{k} the k-Fibonacci matrix. By applying (1), we have $\mathrm{g}_{n+1}^{(k)}=Q_{k}^{n} \mathrm{~g}_{1}^{(k)}$. In [4], [6] and [7], we can find relationships between the k-Fibonacci numbers and their associated matrices. In [2], M. Elmore introduced the Fibonacci function following as:

$$
f_{0}(x)=\frac{e^{\lambda_{1} x}-e^{\lambda_{2} x}}{\sqrt{5}}, f_{n}(x)=f_{0}^{(n)}(x)=\frac{\lambda_{1}^{n} e^{\lambda_{1} x}-\lambda_{2}^{n} e^{\lambda_{2} x}}{\sqrt{5}}
$$

and hence $f_{n+1}(x)=f_{n}(x)+f_{n-1}(x)$, where

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \text { and } \lambda_{2}=\frac{1-\sqrt{5}}{2}
$$

Here, λ_{1}, λ_{2} are the roots of $x^{2}-x-1=0$.
In this paper, we consider a function which is a generalization of the Fibonacci function and consider sequences of generalized Fibonacci functions.

2. GENERALIZED FIBONACCI FUNCTIONS

For positive integers l and n with $l \leq n$, let $Q_{l, n}$ denote the set of all strictly increasing l-sequences from $\{1,2, \ldots, n\}$. For an $n \times n$ matrix A and for $\alpha, \beta \in Q_{l, n}$, let $A[\alpha \mid \beta]$ denote the matrix lying in rows α and columns β and let $A(\alpha \mid \beta)$ denote the matrix complementary to $A[\alpha \mid \beta]$ in A. In particular, we denote $A(\{i\} \mid\{j\})=A(i \mid j)$.

We define a function $G(k, x)$ by

$$
G(k, x)=\sum_{i=0}^{\infty} \frac{g_{i}^{(k)}}{i!} x^{i}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{g_{n}^{(k)}(n+1)}{g_{n+1}^{(k)}} \rightarrow \infty
$$

the function $G(k, x)$ is convergent for all real number x.
For fixed $k \geq 2$, the power series $G(k, x)$ satisfies the differential equation

$$
\begin{equation*}
G^{(k)}(k, x)-G^{(k-1)}(k, x)-\cdots-G^{\prime \prime}(k, x)-G^{\prime}(k, x)-G(k, x)=0 \tag{2}
\end{equation*}
$$

In [5], we can find that the characteristic equation $x^{k}-x^{k-1}-\cdots-x-1=0$ of Q_{k} does not have multiple roots. So, if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the roots of $x^{k}-x^{k-1}-\cdots-x-1=0$, then
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct. That is, the eigenvalues of Q_{k} are distinct. Define V to be the k by k Vandermonde matrix by

$$
V=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{2}\\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{1}^{k-2} & \lambda_{2}^{k-2} & \cdots & \lambda_{k}^{k-2} \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \ldots & \lambda_{k}^{k-1}
\end{array}\right]
$$

Then we have the following theorem.
Theorem 2.1: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of the k-Fibonacci matrix Q_{k}. Then, the initial-value problem $\sum_{i=0}^{k-1} G^{(i)}(k, x)=G^{(k)}(k, x)$, where $G^{(i)}(k, 0)=0$ for $i=0,1, \ldots, k-2$, and $G^{(k-1)}(k, 0)=1$ has the unique solution $G(k, x)=\sum_{i=1}^{k} c_{i} e^{\lambda_{i} x}$, where

$$
\begin{equation*}
c_{i}=(-1)^{k+i} \frac{\operatorname{det} V(k \mid i)}{\operatorname{det} V}, i=1,2, \ldots, k \tag{3}
\end{equation*}
$$

Proof: Since the characteristic equation of Q_{k} is $x^{k}-x^{k-1}-\cdots-x-1=0$, it is clear that $c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}+\cdots+c_{k} e^{\lambda_{k} x}$ is a solution of (2.).

Now, we will prove that $c_{i}=\frac{1}{\operatorname{det} V}(-1)^{k+i} \operatorname{det} V(k \mid i), i=1,2, \ldots, k$. Since $G(k, x)=$ $c_{1} e^{\lambda_{i} x}+c_{2} e^{\lambda_{2} x}+\ldots c_{k} e^{\lambda_{k} x}$ and for $x=0, G^{(i)}(k, 0)=0$ for $i=0,1, \ldots, k-2, G^{(k-1)}(k, 0)=1$, we have

$$
\begin{aligned}
G(k, 0) & =c_{1}+c_{2}+\cdots+c_{k}=0 \\
G^{\prime}(k, 0) & =c_{1} \lambda_{1}+c_{2} \lambda_{2}+\cdots+c_{k} \lambda_{k}=0 \\
& \vdots \\
G^{(k-2)}(k, 0) & =c_{1} \lambda_{1}^{k-2}+c_{2} \lambda_{2}^{k-2}+\cdots+c_{k} \lambda_{k}^{k-2}=0 \\
G^{(k-1)}(k, 0) & =c_{1} \lambda_{1}^{k-1}+c_{2} \lambda_{2}^{k-1}+\cdots+c_{k} \lambda_{k}^{k-1}=1
\end{aligned}
$$

Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{k-1}, c_{k}\right)^{T}$ and $\mathbf{b}=(0,0, \ldots, 0,1)^{T}$. Then we have $V \mathbf{c}=\mathbf{b}$. Since the matrix V is a. Vandermonde matrix and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct, the matrix V is nonsingular. For $i=1,2, \ldots, k$, the matrix $V(k \mid i)$ is also a Vandermonde matrix and nonsingular. Therefore,
by Cramer's rule, we have $c_{i}=(-1)^{k+i} \frac{\operatorname{det} V(k \mid i)}{\operatorname{det} V}, i=1,2, \ldots, k$ and the proof is complete.
We can replace the writing of (2) by the form

$$
G^{(k)}(k, x)=G^{(k-1)}(k, x)+\cdots+G^{\prime \prime}(k, x)+G^{\prime}(k, x)+G(k, x)
$$

This suggests that we use the notation $G_{0}(k, x)=G(k, x)$ and, for $i \geq 1, G_{i}(k, x)=G^{(i)}(k, x)$. Thus

$$
G_{n}(k, x)=G^{(n)}(k, x)=c_{1} \lambda_{1}^{n} e^{\lambda_{1} x}+c_{2} \lambda_{2}^{n} e^{\lambda_{2} x}+\cdots+c_{k} \lambda_{k}^{n} e^{\lambda_{k} x}
$$

gives us the sequence of functions $\left\{G_{n}(k, x)\right\}$ with the property that

$$
\begin{equation*}
G_{n}(k, x)=G_{n-1}(k, x)+G_{n-2}(k, x)+\cdots+G_{n-k}(k, x), \quad n \geq k \tag{4}
\end{equation*}
$$

where each c_{i} is in (3). We shall refer to these functions as k-Fibonacci functions. If $k=2$, then $G(2, x)=f_{0}(x)$ is the Fibonacci function as in [2]. From (4), we have the following theorem.
Theorem 2.2: For the k-Fibonacci function $G_{n}(k, x)$,

$$
\begin{aligned}
G_{0}(k, 0) & =0=g_{0}^{(k)}, G_{1}(k, 0)=0=g_{1}^{(k)}, \ldots, G_{k-2}(k, 0)=0=g_{k-2}^{(k)} \\
G_{k-1}(k, 0) & =1=g_{k-1}^{(k)}, G_{k}(k, 0)=G_{0}(k, 0)+\cdots+G_{k-1}(k, 0)=1=g_{k}^{(k)} \\
g_{n}^{(k)} & =G_{n}(k, 0)=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}+\cdots+c_{k} \lambda_{k}^{n} \\
& =g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}, n \geq k
\end{aligned}
$$

where each c_{i} is given by (3).
Let $\mathrm{G}_{n}(k, x)=\left(G_{n}(k, x), \ldots, G_{n+k-1}(k, x)\right)^{T}$. For $k \geq 2$, the fundamental recurrence realtion (4) can be defined by the vector recurrence relation $\mathbf{G}_{n+1}(k, x)=Q_{k} \mathbf{G}_{n}(k, x)$ and hence $\mathbb{G}_{n+1}(k, x)=Q_{k}^{n} \mathbf{G}_{1}(k, x)$.

Since $g_{k-1}^{(k)}=g_{k}^{(k)}=1$, we can replace the matrix Q_{k} in (1) with

$$
Q_{k}=\left[\begin{array}{ccccc}
0 & g_{k-1}^{(k)} & 0 & \cdots & 0 \\
0 & 0 & g_{k-1}^{(k)} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & g_{k-1}^{(k)} \\
g_{k-1}^{(k)} & g_{k-1}^{(k)} & \cdots & g_{k-1}^{(k)} & g_{k}^{(k)}
\end{array}\right]
$$

Then we can find the matrix $Q_{k}^{n}=\left[g_{i, j}^{\dagger}(n)\right]$ in [5] where, for $i=1,2, \ldots, k$ and $j=1,2, \ldots, k$,

$$
\begin{equation*}
g_{i, j}^{\dagger}(n)=g_{n+(i-2)}^{(k)}+\cdots+g_{n+(i-2)-(j-1)}^{(k)} \tag{5}
\end{equation*}
$$

We know that $g_{i, 1}^{\dagger}(n)=g_{n+i-2}^{(k)}$ and $g_{i, k}^{\dagger}(n)=g_{n+i-1}^{(k)}$. So, we have the following theorem.

Theorem 2.3: For nonnegative integers n and $m, n+m \geq k$, we have

$$
G_{n+m+1}(k, x)=\sum_{j=1}^{k} g_{1, j}^{\dagger}(n) G_{m+j}(k, x)
$$

In particular,

$$
G_{k}(k, x)=\sum_{i=0}^{\infty} \frac{g_{i+k}^{(k)}}{i!} x^{i}
$$

Proof: Since $\mathbf{G}_{n+1}(k, x)=Q_{k}^{n} \mathbf{G}_{\mathbf{1}}(k, x)$,

$$
\begin{aligned}
G_{n+m+1}(k, x) & =Q_{k}^{n+m} \mathbf{G}_{1}(k, x)=Q_{k}^{n} \cdot Q_{k}^{m} \mathbf{G}_{1}(k, x) \\
& =Q_{k}^{n} \mathbf{G}_{m+1}(k, x)
\end{aligned}
$$

By applying (5), we have

$$
G_{n+m+1}(k, x)=g_{1,1}^{\dagger}(n) G_{m+1}(k, x)+\cdots+g_{1, k}^{\dagger}(n) G_{m+k}(k, x)
$$

Since $\sum_{i=0}^{k-1} G_{i}(k, x)=G_{k}(k, x)$ and

$$
\sum_{i=0}^{k-1} G_{i}(k, x)=g_{k}^{(k)}+g_{k+1}^{(k)} x+\frac{g_{k+2}^{(k)}}{2!} x^{2}+\cdots+\frac{g_{n+k}^{(k)}}{n!} x^{n}+\ldots
$$

we have

$$
G_{k}(k, x)=\sum_{i=0}^{\infty} \frac{g_{i+k}^{(k)}}{i!} x^{i}
$$

Note that $Q_{k}^{n+m}=Q_{k}^{m+n}$. Then we have the following corollary.
Corollary 2.4: For nonnegative integers n and $m, n+m \geq k$, we have

$$
G_{n+m+1}(k, x)=\sum_{j=1}^{k} g_{1, j}^{\dagger}(m) G_{n+j}(k, x)
$$

We know that the characteristic polynomial of Q_{k} is $\lambda^{k}-\lambda^{k-1}-\cdots-\lambda-1$. So, we have the following lemma.

Lemma 2.5: Let $\lambda^{k}-\lambda^{k-1}-\cdots-\lambda-1=0$ be the characteristic equation of Q_{k}. Then, for any root λ of the characteristic equation, $n \geq k>0$, we have,

$$
\lambda^{n}=\sum_{j=1}^{k} g_{1, j}^{\dagger}(n) \lambda^{j-1}
$$

Proof: From (5) we have, for $j=1,2, \ldots, k$,

$$
g_{1, j}^{\dagger}(n)=g_{n-1}^{k}+g_{n-2}^{k}+\cdots+g_{n-j}^{k}
$$

It can be shown directly for $n=k$ that

$$
\begin{aligned}
\lambda^{k} & =g_{k}^{(k)} \lambda^{k-1}+\left(g_{k-1}^{(k)}+g_{k-2}^{(k)}+\cdots+g_{1}^{(k)}\right) \lambda^{k-2}+\cdots+\left(g_{k-1}^{(k)}+g_{k-2}^{(k)}\right) \lambda+g_{k-1}^{k} \\
& =\lambda^{k-1}+\lambda^{k-2}+\cdots+\lambda+1
\end{aligned}
$$

We show this by induction on n. Then

$$
\begin{aligned}
\lambda^{n+1}= & \lambda^{n} \cdot \lambda \\
= & \left(g_{1, k}^{\dagger}(n) \lambda^{k-1}+g_{1, k-1}^{\dagger}(n) \lambda^{k-2}+\cdots+g_{1,2}^{\dagger}(n) \lambda+g_{1,1}^{+}(n)\right) \lambda \\
= & g_{n}^{k} \lambda^{k}+\left(g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k+1}^{(k)}\right) \lambda^{k-1} \\
& +\left(g_{n-1}^{(k)}+\cdots+g_{n-k+2}^{(k)}\right) \lambda^{k-2}+\cdots+\left(g_{n-1}^{(k)}+\left(g_{n-2}^{(k)}\right) \lambda^{2}+g_{n-1}^{(k)} \lambda\right.
\end{aligned}
$$

Since $\lambda^{k}=\lambda^{k-1}+\cdots+\lambda+1$, we have

$$
\begin{aligned}
\lambda^{n+1}= & g_{n}^{(k)}\left(\lambda^{k-1}+\cdots+\lambda+1\right)+\left(g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k+1}^{(k)}\right) \lambda^{k-1}+ \\
& \left(g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k+2}^{(k)}\right) \lambda^{k-2}+\cdots+\left(g_{n-1}^{(k)}+g_{n-2}^{(k)}\right) \lambda^{2}+g_{n-1}^{(k)} \lambda \\
= & \left(g_{n}^{(k)}+g_{n-1}^{(k)}+\cdots+g_{n-k+1}^{(k)}\right) \lambda^{k-1}+\left(g_{n}^{(k)}+\cdots+g_{n-k+2}^{(k)}\right) \lambda^{k-2} \\
& +\cdots+\left(g_{n}^{(k)}+g_{n-1}^{(k)}\right) \lambda+g_{n}^{(k)} \\
= & g_{n+1}^{(k)} \lambda^{k-1}+\left(g_{n}^{(k)}+g_{n-1}^{(k)}+\cdots+g_{n-k+2}^{(k)}\right) \lambda^{k-2} \\
& +\cdots+\left(g_{n}^{(k)}+g_{n-1}^{(k)}\right) \lambda+g_{n}^{(k)} \\
= & g_{1, k}^{\dagger}(n+1) \lambda^{k-1}+g_{1, k-1}^{\dagger}(n+1) \lambda^{k-2}+g_{1, k-2}^{\dagger}(n+1) \lambda^{k-3} \\
& +\cdots+g_{1,2}^{\dagger}(n+1) \lambda+g_{1,1}^{\dagger}(n+1) \\
= & \sum_{j=1}^{k} g_{1, j}^{\dagger}(n+1) \lambda^{j-1} .
\end{aligned}
$$

Therefore, by induction of n, the proof is completed.
Theorem 2.6: Let λ be a root of characteristic equation of Q_{k}. For positive integer n, we have

$$
G_{n}(k, \lambda)=\sum_{j=n}^{k} \alpha_{n j} \lambda^{j-1}
$$

where

$$
\alpha_{j, n}=\frac{g_{n+k}^{(k)}}{k!}+\frac{g_{n+j-1}^{(k)}}{(j-1)!}+\sum_{i=k+1}^{\infty} g_{1, j}^{\dagger}(i) \frac{g_{n+i}^{(k)}}{i!} .
$$

Proof: Since $\lambda^{k}=\lambda^{k-1}+\cdots+\lambda+1$ and by lemma 2.5, we have

$$
\begin{aligned}
G_{n}(k, \lambda)= & g_{n}^{(k)}+g_{n+1}^{(k)} \lambda+\frac{g_{n+2}^{(k)}}{2!} \lambda^{2}+\cdots+\frac{g_{2 n}^{(k)}}{n!} \lambda^{n}+\ldots \\
= & \left(g_{n}^{(k)}+\frac{g_{n+k}^{(k)}}{k!}+g_{11}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!}+\cdots+g_{11}^{\dagger}(n) \frac{g_{2 n}^{(k)}}{n!}+\cdots\right)+ \\
& \left(g_{n+1}^{(k)}+\frac{g_{n+k}^{(k)}}{k!}+g_{12}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!}+\cdots+g_{12}^{\dagger}(n) \frac{g_{2 n}^{(k)}}{n!}+\ldots\right) \lambda \\
& +\cdots+ \\
& \left(\frac{g_{n+k-1}^{(k)}}{(k-1)!}+\frac{g_{n+k}^{(k)}}{k!}+g_{1 k}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!}+\cdots+g_{1 k}^{\dagger}(n) \frac{g_{2 n}^{(k)}}{n!}+\cdots\right) \lambda^{k-1} \\
= & \alpha_{1_{n}}+\alpha_{2_{n}} \lambda+\cdots+\alpha_{k_{n}} \lambda^{k-1} \\
= & \sum_{j=1}^{k} \alpha_{j_{n}} \lambda^{j-1},
\end{aligned}
$$

where

$$
\alpha_{j_{n}}=\frac{g_{n+k}^{(k)}}{k!}+\frac{g_{n+j-1}^{(k)}}{(j-1)!}+\sum_{i-k+1}^{\infty} g_{1, j}^{\dagger}(i) \frac{g_{n+i}^{(k)}}{i!}
$$

for $j=1,2, \ldots, k$, the proof is completed.
From theorem 2.3 and theorem 2.6, we have

$$
\begin{aligned}
G_{n}(k, x) & =\sum_{i=0}^{\infty} \frac{g_{n+i}^{(k)}}{i!} x^{i} \\
& =g_{1,1}^{\dagger}(n-1) G_{1}(k, x)+\cdots+g_{1, k}^{\dagger}(n-1) G_{k}(k, x) \\
& =\sum_{j=1}^{k} \alpha_{j_{n}} x^{j-1}
\end{aligned}
$$

where

$$
\alpha_{j_{n}}=\frac{g_{n+k}^{(k)}}{k!}+\frac{g_{n+j-1}^{(k)}}{(j-1)!}+\sum_{i=k+1}^{\infty} g_{1, j}^{\dagger}(i) \frac{g_{n+i}^{(k)}}{i!}
$$

for $j=1,2, \ldots, k$.

3. SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Matrix methods are a major tool in solving certain problems stemming from linear recurrence relations. In this section, the procedure will be illustrated by means of a sequence, and an interesting example will be given.

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{n-i}$ and $g(x)=\sum_{i=0}^{m} b_{i} x^{m-i}$ be polynomials, where $a_{0} \neq 0$ and $b_{0} \neq 0$. The presence of a common divisor for $f(x)$ and $g(x)$ is equivalent to the fact that there exists polynomials $p(x)$ and $q(x)$ such that $f(x) q(x)=g(x) p(x)$ where $\operatorname{deg} p(x) \leq n-1$ and deg $q(x) \leq m-1$. Let $q(x)=u_{0} x^{m-1}+\cdots+u_{m-1}$ and $p(x)=v_{0} x^{n-1}+\cdots+v_{n-1}$. The equality $f(x) q(x)=g(x) p(x)$ can be expressed in the form of a system of equations

$$
\begin{aligned}
a_{0} u_{0} & =b_{0} v_{0} \\
a_{1} u_{0}+a_{0} u_{1} & =b_{1} v_{0}+b_{0} v_{1} \\
a_{2} u_{0}+a_{1} u_{1}+a_{0} u_{2} & =b_{2} v_{0}+b_{1} v_{1}+b_{0} v_{2}
\end{aligned}
$$

The polynomials $f(x)$ and $g(x)$ have a common root if and only if this system of equations has a nonzero solution ($u_{0}, u_{1}, \ldots, v_{0}, v_{1}, \ldots$). If, for example, $m=3$ and $n=2$, then the determinant of this system is of the form

$$
\left|\begin{array}{ccccc}
a_{0} & 0 & 0 & -b_{0} & 0 \\
a_{1} & a_{0} & 0 & -b_{1} & -b_{0} \\
a_{2} & a_{1} & a_{0} & -b_{2} & -b_{1} \\
0 & a_{2} & a_{1} & -b_{3} & -b_{2} \\
0 & 0 & a_{2} & 0 & -b_{3}
\end{array}\right|=\left|\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & 0 & 0 \\
0 & a_{0} & a_{1} & a_{2} & 0 \\
0 & 0 & a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2} & b_{3} & 0 \\
0 & b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right|=|S(f(x), g(x))| .
$$

The matrix $S(f(x), g(x))$ is called the Sylvester matrix of polynomials $f(x)$ and $g(x)$. The determinant of $S(f(x), g(x))$ is called the resultant of $f(x)$ and $g(x)$ and is denoted by $R(f(x), g(x))$. It is clear that $R(f(x), g(x))=0$ if and only if the polynomials $f(x)$ and $g(x)$ have a common divisor, and hence, an equation $f(x)=0$ has multiple roots if and only if $R\left(f(x), f^{\prime}(x)\right)=0$.

Now, we define a sequence. For fixed $k, k \geq 2$, and a complex number a, a sequence of k-Fibonacci functions, $\left\{G_{n}(k, a)\right\}$, is defined recursively as follows:

$$
\begin{equation*}
G_{0}(k, a)=s_{0}, G_{1}(k, a)=s_{1}, \ldots, G_{k-1}(k, a)=s_{k-1}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
G_{n}(k, a)=p_{1} G_{n-1}(k, a)+p_{2} G_{n-2}(k, a)+\cdots+p_{k} G_{n-k}(k, a), \quad n \geq k, \tag{7}
\end{equation*}
$$

where $s_{0}, s_{1}, \ldots, s_{k-1}, p_{1}, p_{2}, \ldots, p_{k}$ are complex numbers.
Our natural question now becomes, for $k \geq 2$, what is an explicit expression for $G_{n}(k, a)$ is terms of $s_{0}, s_{1}, \ldots, s_{k-1}, p_{1}, \ldots, p_{k}$? If $s_{0}=\cdots=s_{k-2}=0, s_{k-1}=s_{k}=1, p_{1}=\cdots=$ $p_{k}=1$ and $a=0$, then by theorem 2.2 we have $G_{n}(k, 0)=g_{n}$. In [8], Rosenbaum gave the explicit expression for $k=2$.

In this section, we give an explicit expression for $G_{n}(k, a)=p_{1} G_{n-1}(k, a)+p_{2} G_{n-2}(k, a)+$ $\cdots+p_{k} G_{n-k}(k, a), n \geq k$ in terms of initial conditions $G_{0}(k, a)=s_{0}, G_{1}(k, a)=$ $s_{1}, \ldots, G_{k-1}(k, a)=s_{k-1}, k \geq 2$.

Let $\tilde{\mathbf{G}}_{n}(k)=\left(G_{n}(k, a), \ldots, G_{n-k+1}(k, a)\right)^{T}$ for $k \geq 2$. The fundamental recurrence relation (7) can be defined by the vector recurrence relation $\tilde{\mathbf{G}}_{n}(k)=\tilde{Q}_{k} \tilde{\mathbf{G}}_{n-1}(k)$, where

$$
\tilde{Q}_{k}=\left[\begin{array}{cc}
\mathrm{p} & p_{k} \\
I_{k-1} & 0
\end{array}\right] \text { and } \mathrm{p}=\left[p_{1}, p_{2}, \ldots, p_{k-1}\right] .
$$

Let $\mathbf{s}=\left(s_{k-1}, \ldots, s_{0}\right)^{T}$. Then, we have, for $n \geq 0, \tilde{\mathbf{G}}_{n+k-1}(k)=\tilde{Q}_{k}^{n} \mathbf{s}$, and the characteristic equation of \tilde{Q}_{k} is

$$
f(\lambda)=\lambda^{k}-p_{1} \lambda^{k-1}-\cdots-p_{k-1} \lambda-p_{k}=0 .
$$

If $R\left(f(\lambda), f^{\prime}(\lambda)\right) \neq 0$, then the equation $f(\lambda)=0$ has distinct k roots.
Theorem 3.1: Let $f(\lambda)$ be the characteristic equation of the matrix \tilde{Q}_{k}. If $R\left(f(\lambda), f^{\prime}(\lambda)\right) \neq 0$, then $G_{n}(k, a)=p_{1} G_{n-1}(k, a)+p_{2} G_{n-2}(k, a)+\cdots+p_{k} G_{n-k}(k, a)$ has an explicit expression in terms of s_{0}, \ldots, s_{k-1}.

Proof: If $R\left(f(\lambda), f^{\prime}(\lambda)\right) \neq 0$, then the characteristic equation of \tilde{Q}_{k} has k distinct roots, say $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Since the matrix \tilde{Q}_{k} is diagonalizable, there exists a matrix Λ such that $\Lambda^{-1} \tilde{Q}_{k} \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Then $\tilde{\mathbf{G}}_{n+k-1}(k)=\Lambda \operatorname{diag}\left(\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{k}^{n}\right) \Lambda^{-1} \mathbf{s}$, and hence we have

$$
G_{n}(k, a)=d_{1} \lambda_{1}^{n}+d_{2} \lambda_{2}^{n}+\cdots+d_{k} \lambda_{k}^{n}=\sum_{i=1}^{k} d_{i} \lambda_{i}^{n},
$$

where $d_{1}, d_{2}, \ldots, d_{k}$ are complex numbers independent of n. We can determine the values of $d_{1}, d_{2}, \ldots, d_{k}$ by Cramer's rule. That is, by setting $n=0,1, \ldots, k-1$, we have

$$
\begin{aligned}
G_{0}(k, a) & =d_{1}+d_{2}+\cdots+d_{k} \\
G_{1}(k, a) & =d_{1} \lambda_{1}+d_{2} \lambda_{2}+\cdots+d_{k} \lambda_{k} \\
& \vdots \\
G_{k-1}(k, a) & =d_{1} \lambda_{1}^{k-1}+d_{2} \lambda_{2}^{k-1}+\cdots+d_{k} \lambda_{k}^{k-1},
\end{aligned}
$$

and hence

$$
\begin{equation*}
V \mathbf{d}=\mathbf{s}, \quad \mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{k}\right)^{T} . \tag{8}
\end{equation*}
$$

Therefore, we now have the desired result from (8).
Recall that

$$
\tilde{Q}_{k}=\left[\begin{array}{cc}
\mathbf{p} & p_{k} \\
I_{k-1} & \mathbf{0}
\end{array}\right]
$$

where $\left[\mathrm{p}=p_{1}, p_{2}, \ldots, p_{k-1}\right]$. Then, in [1], we have the following theorem.
Theorem 3.2 [1]: The (i, j) entry $q_{i j}^{(n)}\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ in \tilde{Q}_{k}^{n} is given by the following formula:

$$
\begin{align*}
q_{i j}^{(n)}\left(p_{1}, p_{2}, \ldots, p_{k}\right)= & \sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{j}+m_{j+1}+\cdots+m_{k}}{m_{1}+\cdots+m_{k}} \\
& \times\binom{ m_{1}+\cdots+m_{k}}{m_{1}, m_{2}, \ldots, m_{k}} p_{1}^{m_{1}} \ldots p_{k}^{m_{k}} \tag{9}
\end{align*}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+k m_{k}=n-i+j$, and the coefficient in (9) is defined to be 1 if $n=i-j$.

Applying the $\tilde{\mathbf{G}}_{n+k-1}(k)=\tilde{Q}_{k}^{n}$ s to the above theorem, we have

$$
\begin{align*}
G_{n}(k, a)= & q_{k 1}^{(n)}\left(p_{1}, \ldots, p_{k}\right) s_{k-1}+q_{k 2}^{(n)}\left(p_{1}, \ldots, p_{k}\right) s_{k-2}+ \\
& \cdots+q_{k k}^{(n)}\left(p_{1}, \ldots, p_{k}\right) s_{0} \\
= & \sum_{j=1}^{k} q_{k j}^{(n)}\left(p_{1}, \ldots, p_{k}\right) s_{k-j} . \tag{10}
\end{align*}
$$

From (9), we have

$$
\begin{aligned}
q_{k j}^{(n)}\left(p_{1}, \ldots, p_{k}\right)= & \sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{j}+m_{j+1}+\cdots+m_{k}}{m_{1}+\cdots+m_{k}} \\
& \times\binom{ m_{1}+\cdots+m_{k}}{m_{1}, m_{2}, \ldots, m_{k}} p_{1}^{m_{1}} \ldots p_{k}^{m_{k}},
\end{aligned}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+k m_{k}=n-k+j$, and the coefficient in (10) is defined to be 1 if $n=k-j$.

Hence, from theorem 3.1 and (10),

$$
\begin{aligned}
G_{n}(k, a) & =\sum_{j=1}^{k} q_{k j}^{(n)}\left(p_{1}, \ldots, p_{k}\right) s_{k-j} \\
& =\sum_{i=1}^{k} d_{i} \lambda_{i}^{n}
\end{aligned}
$$

Example: In (6) and (7), if we take $a=0, s_{0}=s_{1}=\cdots=s_{k-3}=0, s_{k-2}=s_{k-1}=1$ and $p_{1}=\cdots=p_{k}=1$, then

$$
G_{0}(k, 0)=\cdots=G_{k-3}(k, 0)=0, G_{k-2}(k, 0)=G_{k-1}(k, 0)=1
$$

and for $n \geq k \geq 2$,

$$
\begin{aligned}
G_{n}(k, 0) & =G_{n-1}(k, 0)+G_{n-2}(k, 0)+\cdots+G_{n-k}(k, 0) \\
& =g_{n}=g_{n-1}+g_{n-2}+\cdots+g_{n-k}
\end{aligned}
$$

Let $\tilde{\mathrm{g}}_{n}^{(k)}=\left(g_{n}^{(k)}, \ldots, g_{n-k+1}^{(k)}\right)^{T}$. For any $k \geq 2$, the fundamental recurrence relation $g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}$ can be defined by the vector recurrence relation $\tilde{\mathbf{g}}_{n}^{(k)}=\tilde{Q}_{k} \tilde{\mathbf{g}}_{n-1}^{(k)}$. Then, we have $\tilde{\mathbf{g}}_{n}^{(k)}=\tilde{Q}_{k}^{n} \tilde{\mathbf{g}}_{0}^{(k)}=\tilde{Q}_{k}^{n}(1,1,0, \ldots, 0)^{T}$. Since \tilde{Q}_{k} has k distinct eigenvalues (see [5]),

$$
g_{n}^{(k)}=d_{1} \lambda_{1}^{n}+\cdots+d_{k} \lambda_{k}^{n}
$$

Hence, we can determine $d_{1}, d_{2}, \ldots, d_{k}$ from (8).
For example, if $k=3$, then the characteristic equation of \tilde{Q}_{3} is $f(\lambda)=\lambda^{3}-\lambda^{2}-\lambda-1=0$, and hence

$$
R\left(f(\lambda), f^{\prime}(\lambda)\right)=\left|\begin{array}{ccccc}
1 & -1 & -1 & -1 & 0 \\
0 & 1 & -1 & -1 & -1 \\
3 & -2 & -1 & 0 & 0 \\
0 & 3 & -2 & -1 & 0 \\
0 & 0 & 3 & -2 & -1
\end{array}\right|=44 \neq 0
$$

Thus $f(\lambda)=0$ has 3 distinct roots. Suppose α, β and γ are the distinct roots of $f(\lambda)=0$. Then we have

$$
\begin{aligned}
& \alpha=\frac{1}{3}(u+v)+\frac{1}{3} \\
& \beta=-\frac{1}{6}(u+v)+\frac{i \sqrt{3}}{6}(u-v)+\frac{1}{3} \\
& \gamma=-\frac{1}{6}(u+v)-\frac{i \sqrt{3}}{6}(u-v)+\frac{1}{3}
\end{aligned}
$$

where

$$
i=\sqrt{-1}, \quad u=\sqrt[3]{19+3 \sqrt{33}} \text { and } \quad v=\sqrt[3]{19-3 \sqrt{33}}
$$

So, we have

$$
\begin{equation*}
g_{n}^{(3)}=d_{1} \alpha^{n}+d_{2} \beta^{n}+d_{3} \gamma^{n} \tag{11}
\end{equation*}
$$

and hence

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2}
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Set

$$
\delta=\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2}
\end{array}\right], \delta_{\alpha}=\operatorname{det}\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & \beta & \gamma \\
1 & \beta^{2} & \gamma^{2}
\end{array}\right], \delta_{\beta}=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 1 \\
\alpha & 1 & \gamma \\
\alpha^{2} & 1 & \gamma^{2}
\end{array}\right]
$$

and

$$
\delta_{\lambda}=\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 0 \\
\alpha & \beta & 1 \\
\alpha^{2} & \beta^{2} & 1
\end{array}\right]
$$

Then we have

$$
d_{1}=\frac{\delta_{\alpha}}{\delta}, d_{2}=\frac{\delta_{\beta}}{\delta}, \quad \text { and } d_{3}=\frac{\delta_{\gamma}}{\delta}
$$

As we know, the complex numbers d_{1}, d_{2}, and d_{3} are independent of n.
We can also find an expression for $g_{n}^{(3)}$ in [6] follows:

$$
\begin{equation*}
g_{n}^{(3)}=\frac{\left(g_{n-1}^{(3)}+g_{n-2}^{(3)}\right)(\beta-\gamma)-\left(\beta^{n}-\alpha^{n}\right)}{(\alpha-1)(\beta-\gamma)} \tag{12}
\end{equation*}
$$

So, by (11) and (12),

$$
\frac{\delta_{\alpha} \alpha^{n}+\delta_{\beta} \beta^{n}+\delta_{\gamma} \gamma^{n}}{\delta}=\frac{\left(g_{n-1}^{(3)}+g_{n-2}^{(3)}\right)(\beta-\gamma)-\left(\beta^{n}-\alpha^{n}\right)}{(\alpha-1)(\beta-\gamma)}
$$

Similarly, if $k=2$, then

$$
\begin{equation*}
g_{n}^{(2)}=F_{n}=\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right), \tag{13}
\end{equation*}
$$

where λ_{1} and λ_{2} are the eigenvalues of Q_{2}. Actually

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2} \text { and } \lambda_{2}=\frac{1-\sqrt{5}}{2} .
$$

In this case,

$$
d_{1}=\frac{1}{\lambda_{1}-\lambda_{2}}=\frac{1}{\sqrt{5}}, \quad d_{2}=\frac{1}{\lambda_{2}-\lambda_{1}}=-\frac{1}{\sqrt{5}}
$$

and (13) is Binet's formula for the nth Fibonacci number F_{n}.

ACKNOWLEDGMENTS

This paper was supported by Korea Research Foundation Grant (KRF-2000-015-DP0005). The second author was supported by the BK21 project for the Korea Education Ministry.

REFERENCES

[1] M. Bicknell and V.E. Hoggatt, Jr. Fibonacci's Problem Book. The Fibonacci Association, 1974.
[2] M. Elmore. "Fibonacci Functions." The Fibonacci Quarterly 4 (1967): 371-382.
[3] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants. Birkhauser, Boston, 1994.
[4] G.Y. Lee and S.G. Lee. "A Note on Generalized Fibonacci Numbers." The Fibonacci Quarterly 33.3 (1995): 273-278.
[5] G.Y. Lee, S.G. Lee, J.S. Kim and H.K. Shin. "The Binet Formula and Representations of k-generalized Fibonacci Numbers." The Fibonacci Quarterly 39.2 (2001): 158-164.
[6] G.Y. Lee, S.G. Lee and H.G. Shin. "On the k-generalized Fibonacci Matrix Q_{k}." Linear Algebra and Its Appl. 251 (1997): 73-88.
[7] E.P. Miles. "Generalize Fibonacci Numbers and Associated Matrices." Amer. Math. Monthly 67 (1960):745-752.
[8] R.A. Rosenbaum. "An Application of Matrices to Linear Recursion Relations." Amer. Math. Monthly 66 (1959): 792-793.

AMS Classification Numbers: 11B37, 11B39, 15A36
国

