GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Gwang-Yeon Lee

Department of Mathematics, Hanseo University, Seosan 356-706, Korea

Jim-Soo Kim

School of Electrical and Computer Engineering, SungKyunKwan University Suwon 440-746, Korea

Tae Ho Cho

School of Electrical and Computer Engineering, SungKyunKwan University Suwon 440-746, Korea (Submitted January 2001-Final Revision May 2001)

1. INTRODUCTION

We consider a generalization of the Fibonacci sequence which is called the k-Fibonacci sequence for a positive integer $k \ge 2$. The k-Fibonacci sequence $\{g_n^{(k)}\}$ is defined as

$$g_0^{(k)} = g_1^{(k)} = \dots = g_{k-2}^{(k)} = 0, \quad g_{k-1}^{(k)} = 1$$

and for $n \ge k \ge 2$,

$$g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k}^{(k)}.$$

We call $g_n^{(k)}$ the n^{th} k-Fibonacci number. For example, if k = 2, then $\{g_n^{(2)}\}$ is the Fibonacci sequence $\{F_n\}$. If k = 5, then $g_0^{(5)} = g_1^{(5)} = g_2^{(5)} = g_3^{(5)} = 0$, $g_4^{(5)} = 1$, and the 5-Fibonacci sequence is

$$\left(g_0^{(5)}=0\right), 0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, \dots$$

Let E be a 1 by (k-1) matrix whose entries are ones and let I_n be the identity matrix of

order *n*. Let $\mathbf{g}_n^{(k)} = \left(g_n^{(k)}, \ldots, g_{n+k-1}^{(k)}\right)^T$ for $n \ge 0$. For any $k \ge 2$, the fundamental recurrence relation, $n \ge k$,

$$g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k}^{(k)}$$

can be defined by the vector recurrence relation $\mathbf{g}_{n+1}^{(k)} = Q_k \mathbf{g}_n^{(k)}$, where

$$Q_k = \begin{bmatrix} 0 & I_{k-1} \\ 1 & E \end{bmatrix}.$$
 (1)

108

[MAY

We call Q_k the k-Fibonacci matrix. By applying (1), we have $\mathbf{g}_{n+1}^{(k)} = Q_k^n \mathbf{g}_1^{(k)}$. In [4], [6] and [7], we can find relationships between the k-Fibonacci numbers and their associated matrices. In [2], M. Elmore introduced the Fibonacci function following as:

$$f_0(x)=rac{e^{\lambda_1 x}-e^{\lambda_2 x}}{\sqrt{5}},\;f_n(x)=f_0^{(n)}(x)=rac{\lambda_1^n e^{\lambda_1 x}-\lambda_2^n e^{\lambda_2 x}}{\sqrt{5}},$$

and hence $f_{n+1}(x) = f_n(x) + f_{n-1}(x)$, where

$$\lambda_1=rac{1+\sqrt{5}}{2} ext{ and } \lambda_2=rac{1-\sqrt{5}}{2}.$$

Here, λ_1, λ_2 are the roots of $x^2 - x - 1 = 0$.

In this paper, we consider a function which is a generalization of the Fibonacci function and consider sequences of generalized Fibonacci functions.

2. GENERALIZED FIBONACCI FUNCTIONS

For positive integers l and n with $l \leq n$, let $Q_{l,n}$ denote the set of all strictly increasing *l*-sequences from $\{1, 2, ..., n\}$. For an $n \times n$ matrix A and for $\alpha, \beta \in Q_{l,n}$, let $A[\alpha|\beta]$ denote the matrix lying in rows α and columns β and let $A(\alpha|\beta)$ denote the matrix complementary to $A[\alpha|\beta]$ in A. In particular, we denote $A(\{i\}|\{j\}) = A(i|j)$.

We define a function G(k, x) by

$$G(k,x) = \sum_{i=0}^{\infty} \frac{g_i^{(k)}}{i!} x^i.$$

Since

$$\lim_{n \to \infty} \frac{g_n^{(k)}(n+1)}{g_{n+1}^{(k)}} \to \infty,$$

the function G(k, x) is convergent for all real number x.

For fixed $k \ge 2$, the power series G(k, x) satisfies the differential equation

$$G^{(k)}(k,x) - G^{(k-1)}(k,x) - \dots - G''(k,x) - G'(k,x) - G(k,x) = 0.$$
⁽²⁾

In [5], we can find that the characteristic equation $x^k - x^{k-1} - \cdots - x - 1 = 0$ of Q_k does not have multiple roots. So, if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the roots of $x^k - x^{k-1} - \cdots - x - 1 = 0$, then

2003]

 $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct. That is, the eigenvalues of Q_k are distinct. Define V to be the k by k Vandermonde matrix by

$$V = \begin{bmatrix} 1 & 1 & \dots & 1\\ \lambda_1 & \lambda_2 & \dots & \lambda_k\\ \vdots & \vdots & \vdots & \vdots\\ \lambda_1^{k-2} & \lambda_2^{k-2} & \dots & \lambda_k^{k-2}\\ \lambda_1^{k-1} & \lambda_2^{k-1} & \dots & \lambda_k^{k-1} \end{bmatrix}.$$
 (2)

Then we have the following theorem.

Theorem 2.1: Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the eigenvalues of the k-Fibonacci matrix Q_k . Then, the initial-value problem $\sum_{i=0}^{k-1} G^{(i)}(k,x) = G^{(k)}(k,x)$, where $G^{(i)}(k,0) = 0$ for $i = 0, 1, \ldots, k-2$,

and $G^{(k-1)}(k,0) = 1$ has the unique solution $G(k,x) = \sum_{i=1}^{k} c_i e^{\lambda_i x}$, where

 $\alpha(1, \alpha)$

$$c_{i} = (-1)^{k+i} \frac{\det V(k|i)}{\det V}, \ i = 1, 2, \dots, k.$$
(3)

Proof: Since the characteristic equation of Q_k is $x^k - x^{k-1} - \cdots - x - 1 = 0$, it is clear that $c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \cdots + c_k e^{\lambda_k x}$ is a solution of (2.). Now, we will prove that $c_i = \frac{1}{\det V} (-1)^{k+i} \det V(k|i), i = 1, 2, \dots, k$. Since G(k, x) = 0

 $c_1 e^{\lambda_i x} + c_2 e^{\lambda_2 x} + \ldots c_k e^{\lambda_k x}$ and for x = 0, $G^{(i)}(k, 0) = 0$ for $i = 0, 1, \ldots, k-2, G^{(k-1)}(k, 0) = 1$, we have

$$G(k,0) = c_1 + c_2 + \dots + c_k = 0$$

$$G'(k,0) = c_1\lambda_1 + c_2\lambda_2 + \dots + c_k\lambda_k = 0$$

$$\vdots$$

$$G^{(k-2)}(k,0) = c_1\lambda_1^{k-2} + c_2\lambda_2^{k-2} + \dots + c_k\lambda_k^{k-2} = 0$$

$$G^{(k-1)}(k,0) = c_1 \lambda_1^{k-1} + c_2 \lambda_2^{k-1} + \dots + c_k \lambda_k^{k-1} = 1.$$

Let $c = (c_1, c_2, ..., c_{k-1}, c_k)^T$ and $b = (0, 0, ..., 0, 1)^T$. Then we have Vc = b. Since the matrix V is a Vandermonde matrix and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct, the matrix V is nonsingular. For i = 1, 2, ..., k, the matrix V(k|i) is also a Vandermonde matrix and nonsingular. Therefore,

by Cramer's rule, we have $c_i = (-1)^{k+i} \frac{\det V(k|i)}{\det V}$, i = 1, 2, ..., k and the proof is complete. We can replace the writing of (2) by the form

$$G^{(k)}(k,x) = G^{(k-1)}(k,x) + \dots + G''(k,x) + G'(k,x) + G(k,x).$$

[MAY

This suggests that we use the notation $G_0(k, x) = G(k, x)$ and, for $i \ge 1$, $G_i(k, x) = G^{(i)}(k, x)$. Thus

$$G_n(k,x) = G^{(n)}(k,x) = c_1\lambda_1^n e^{\lambda_1 x} + c_2\lambda_2^n e^{\lambda_2 x} + \dots + c_k\lambda_k^n e^{\lambda_k x}$$

gives us the sequence of functions $\{G_n(k,x)\}$ with the property that

$$G_n(k,x) = G_{n-1}(k,x) + G_{n-2}(k,x) + \dots + G_{n-k}(k,x), \quad n \ge k,$$
(4)

where each c_i is in (3). We shall refer to these functions as k-Fibonacci functions. If k = 2, then $G(2, x) = f_0(x)$ is the Fibonacci function as in [2]. From (4), we have the following theorem.

Theorem 2.2: For the k-Fibonacci function $G_n(k, x)$,

$$G_0(k,0) = 0 = g_0^{(k)}, G_1(k,0) = 0 = g_1^{(k)}, \dots, G_{k-2}(k,0) = 0 = g_{k-2}^{(k)},$$

$$G_{k-1}(k,0) = 1 = g_{k-1}^{(k)}, G_k(k,0) = G_0(k,0) + \dots + G_{k-1}(k,0) = 1 = g_k^{(k)},$$

$$g_n^{(k)} = G_n(k,0) = c_1\lambda_1^n + c_2\lambda_2^n + \dots + c_k\lambda_k^n$$

$$= g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k}^{(k)}, \ n \ge k,$$

where each c_i is given by (3).

Let $\mathbf{G}_n(k,x) = (G_n(k,x), \ldots, G_{n+k-1}(k,x))^T$. For $k \geq 2$, the fundamental recurrence relation (4) can be defined by the vector recurrence relation $\mathbf{G}_{n+1}(k,x) = Q_k \mathbf{G}_n(k,x)$ and hence $\mathbf{G}_{n+1}(k,x) = Q_k^n \mathbf{G}_1(k,x)$.

Since $g_{k-1}^{(k)} = g_k^{(k)} = 1$, we can replace the matrix Q_k in (1) with

Then we can find the matrix $Q_k^n = [g_{i,j}^{\dagger}(n)]$ in [5] where, for i = 1, 2, ..., k and j = 1, 2, ..., k,

$$g_{i,j}^{\dagger}(n) = g_{n+(i-2)}^{(k)} + \dots + g_{n+(i-2)-(j-1)}^{(k)}.$$
(5)

We know that $g_{i,1}^{\dagger}(n) = g_{n+i-2}^{(k)}$ and $g_{i,k}^{\dagger}(n) = g_{n+i-1}^{(k)}$. So, we have the following theorem.

2003

GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Theorem 2.3: For nonnegative integers n and m, $n + m \ge k$, we have

$$G_{n+m+1}(k,x) = \sum_{j=1}^{k} g_{1,j}^{\dagger}(n) G_{m+j}(k,x).$$

In particular,

$$G_k(k,x) = \sum_{i=0}^\infty rac{g_{i+k}^{(k)}}{i!} x^i.$$

Proof: Since $\mathbf{G}_{n+1}(k, x) = Q_k^n \mathbf{G}_1(k, x)$,

$$G_{n+m+1}(k,x) = Q_k^{n+m} \mathbf{G}_1(k,x) = Q_k^n \cdot Q_k^m \mathbf{G}_1(k,x)$$

= $Q_k^n \mathbf{G}_{m+1}(k,x).$

By applying (5), we have

$$G_{n+m+1}(k,x) = g_{1,1}^{\dagger}(n)G_{m+1}(k,x) + \cdots + g_{1,k}^{\dagger}(n)G_{m+k}(k,x).$$

Since $\sum_{i=0}^{k-1} G_i(k,x) = G_k(k,x)$ and

$$\sum_{i=0}^{k-1} G_i(k,x) = g_k^{(k)} + g_{k+1}^{(k)}x + \frac{g_{k+2}^{(k)}}{2!}x^2 + \dots + \frac{g_{n+k}^{(k)}}{n!}x^n + \dots$$

we have

$$G_k(k,x)=\sum_{i=0}^\infty rac{g_{i+k}^{(k)}}{i!}x^i.$$
 \Box

Note that $Q_k^{n+m} = Q_k^{m+n}$. Then we have the following corollary. Corollary 2.4: For nonnegative integers n and m, $n+m \ge k$, we have

$$G_{n+m+1}(k,x) = \sum_{j=1}^{k} g_{1,j}^{\dagger}(m) G_{n+j}(k,x).$$

We know that the characteristic polynomial of Q_k is $\lambda^k - \lambda^{k-1} - \cdots - \lambda - 1$. So, we have the following lemma.

MAY

Lemma 2.5: Let $\lambda^k - \lambda^{k-1} - \cdots - \lambda - 1 = 0$ be the characteristic equation of Q_k . Then, for any root λ of the characteristic equation, $n \geq k > 0$, we have,

$$\lambda^n = \sum_{j=1}^k g_{1,j}^\dagger(n) \lambda^{j-1}.$$

Proof: From (5) we have, for $j = 1, 2, \ldots, k$,

$$g_{1,j}^{\dagger}(n) = g_{n-1}^{k} + g_{n-2}^{k} + \dots + g_{n-j}^{k}.$$

It can be shown directly for n = k that

$$\lambda^{k} = g_{k}^{(k)}\lambda^{k-1} + \left(g_{k-1}^{(k)} + g_{k-2}^{(k)} + \dots + g_{1}^{(k)}\right)\lambda^{k-2} + \dots + \left(g_{k-1}^{(k)} + g_{k-2}^{(k)}\right)\lambda + g_{k-1}^{k}$$
$$= \lambda^{k-1} + \lambda^{k-2} + \dots + \lambda + 1$$

We show this by induction on n. Then

$$\begin{split} \lambda^{n+1} &= \lambda^n \cdot \lambda \\ &= \left(g_{1,k}^{\dagger}(n) \lambda^{k-1} + g_{1,k-1}^{\dagger}(n) \lambda^{k-2} + \dots + g_{1,2}^{\dagger}(n) \lambda + g_{1,1}^{+}(n) \right) \lambda \\ &= g_n^k \lambda^k + \left(g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k+1}^{(k)} \right) \lambda^{k-1} \\ &+ \left(g_{n-1}^{(k)} + \dots + g_{n-k+2}^{(k)} \right) \lambda^{k-2} + \dots + \left(g_{n-1}^{(k)} + (g_{n-2}^{(k)}) \lambda^2 + g_{n-1}^{(k)} \lambda \right) \end{split}$$

Since $\lambda^k = \lambda^{k-1} + \cdots + \lambda + 1$, we have

2003]

$$\begin{split} \lambda^{n+1} &= g_n^{(k)} \left(\lambda^{k-1} + \dots + \lambda + 1 \right) + \left(g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k+1}^{(k)} \right) \lambda^{k-1} + \\ &\left(g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k+2}^{(k)} \right) \lambda^{k-2} + \dots + \left(g_{n-1}^{(k)} + g_{n-2}^{(k)} \right) \lambda^2 + g_{n-1}^{(k)} \lambda \\ &= \left(g_n^{(k)} + g_{n-1}^{(k)} + \dots + g_{n-k+1}^{(k)} \right) \lambda^{k-1} + \left(g_n^{(k)} + \dots + g_{n-k+2}^{(k)} \right) \lambda^{k-2} \\ &+ \dots + \left(g_n^{(k)} + g_{n-1}^{(k)} \right) \lambda + g_n^{(k)} \\ &= g_{n+1}^{(k)} \lambda^{k-1} + \left(g_n^{(k)} + g_{n-1}^{(k)} + \dots + g_{n-k+2}^{(k)} \right) \lambda^{k-2} \\ &+ \dots + \left(g_n^{(k)} + g_{n-1}^{(k)} \right) \lambda + g_n^{(k)} \\ &= g_{1,k}^{\dagger} (n+1) \lambda^{k-1} + g_{1,k-1}^{\dagger} (n+1) \lambda^{k-2} + g_{1,k-2}^{\dagger} (n+1) \lambda^{k-3} \\ &+ \dots + g_{1,2}^{\dagger} (n+1) \lambda + g_{1,1}^{\dagger} (n+1) \end{split}$$

Therefore, by induction of n, the proof is completed. \Box **Theorem 2.6**: Let λ be a root of characteristic equation of Q_k . For positive integer n, we have

$$G_n(k,\lambda) = \sum_{j=n}^k \alpha_{nj} \lambda^{j-1},$$

where

.

.

$$lpha_{j,n} = rac{g_{n+k}^{(k)}}{k!} + rac{g_{n+j-1}^{(k)}}{(j-1)!} + \sum_{i=k+1}^\infty g_{1,j}^\dagger(i) rac{g_{n+i}^{(k)}}{i!}.$$

Proof: Since $\lambda^k = \lambda^{k-1} + \cdots + \lambda + 1$ and by lemma 2.5, we have

[MAY

ŀ

ŀ

$$\begin{split} G_n(k,\lambda) &= g_n^{(k)} + g_{n+1}^{(k)} \lambda + \frac{g_{n+2}^{(k)}}{2!} \lambda^2 + \dots + \frac{g_{2n}^{(k)}}{n!} \lambda^n + \dots \\ &= \left(g_n^{(k)} + \frac{g_{n+k}^{(k)}}{k!} + g_{11}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!} + \dots + g_{11}^{\dagger}(n) \frac{g_{2n}^{(k)}}{n!} + \dots \right) + \\ &\quad \left(g_{n+1}^{(k)} + \frac{g_{n+k}^{(k)}}{k!} + g_{12}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!} + \dots + g_{12}^{\dagger}(n) \frac{g_{2n}^{(k)}}{n!} + \dots \right) \lambda \\ &\quad + \dots + \\ &\quad \left(\frac{g_{n+k-1}^{(k)}}{(k-1)!} + \frac{g_{n+k}^{(k)}}{k!} + g_{1k}^{\dagger}(k+1) \frac{g_{n+k+1}^{(k)}}{(k+1)!} + \dots + g_{1k}^{\dagger}(n) \frac{g_{2n}^{(k)}}{n!} + \dots \right) \lambda^{k-1} \\ &= \alpha_{1n} + \alpha_{2n} \lambda + \dots + \alpha_{kn} \lambda^{k-1} \\ &= \sum_{j=1}^k \alpha_{jn} \lambda^{j-1}, \end{split}$$

where

$$\alpha_{j_n} = \frac{g_{n+k}^{(k)}}{k!} + \frac{g_{n+j-1}^{(k)}}{(j-1)!} + \sum_{i-k+1}^{\infty} g_{1,j}^{\dagger}(i) \frac{g_{n+i}^{(k)}}{i!}$$

for j = 1, 2, ..., k, the proof is completed. From theorem 2.3 and theorem 2.6, we have

$$egin{aligned} G_n(k,x) &= \sum_{i=0}^\infty rac{g_{n+i}^{(k)}}{i!} x^i \ &= g_{1,1}^\dagger (n-1) G_1(k,x) + \dots + g_{1,k}^\dagger (n-1) G_k(k,x) \ &= \sum_{j=1}^k lpha_{j_n} x^{j-1}, \end{aligned}$$

2003]

where

$$\alpha_{j_n} = \frac{g_{n+k}^{(k)}}{k!} + \frac{g_{n+j-1}^{(k)}}{(j-1)!} + \sum_{i=k+1}^{\infty} g_{1,j}^{\dagger}(i) \frac{g_{n+i}^{(k)}}{i!}$$

for j = 1, 2, ..., k.

3. SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Matrix methods are a major tool in solving certain problems stemming from linear recurrence relations. In this section, the procedure will be illustrated by means of a sequence, and an interesting example will be given.

To begin with, we introduce the concept of the resultant of given polynomials [3]. Let $f(x) = \sum_{i=0}^{n} a_i x^{n-i}$ and $g(x) = \sum_{i=0}^{m} b_i x^{m-i}$ be polynomials, where $a_0 \neq 0$ and $b_0 \neq 0$. The presence of a common divisor for f(x) and g(x) is equivalent to the fact that there exists polynomials p(x) and q(x) such that f(x)q(x) = g(x)p(x) where deg $p(x) \leq n-1$ and deg $q(x) \leq m-1$. Let $q(x) = u_0 x^{m-1} + \cdots + u_{m-1}$ and $p(x) = v_0 x^{n-1} + \cdots + v_{n-1}$. The equality f(x)q(x) = g(x)p(x) can be expressed in the form of a system of equations

$$a_0u_0 = b_0v_0$$

 $a_1u_0 + a_0u_1 = b_1v_0 + b_0v_1$
 $a_2u_0 + a_1u_1 + a_0u_2 = b_2v_0 + b_1v_1 + b_0v_2$

The polynomials f(x) and g(x) have a common root if and only if this system of equations has a nonzero solution $(u_0, u_1, \ldots, v_0, v_1, \ldots)$. If, for example, m = 3 and n = 2, then the determinant of this system is of the form

The matrix S(f(x), g(x)) is called the *Sylvester matrix* of polynomials f(x) and g(x). The determinant of S(f(x), g(x)) is called the *resultant* of f(x) and g(x) and is denoted by R(f(x), g(x)). It is clear that R(f(x), g(x)) = 0 if and only if the polynomials f(x) and g(x) have a common divisor, and hence, an equation f(x) = 0 has multiple roots if and only if R(f(x), f'(x)) = 0.

Now, we define a sequence. For fixed $k, k \ge 2$, and a complex number a, a sequence of k-Fibonacci functions, $\{G_n(k,a)\}$, is defined recursively as follows:

$$G_0(k,a) = s_0, \ G_1(k,a) = s_1, \ \dots, \ G_{k-1}(k,a) = s_{k-1},$$
 (6)

116

[MAY

GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

$$G_n(k,a) = p_1 G_{n-1}(k,a) + p_2 G_{n-2}(k,a) + \dots + p_k G_{n-k}(k,a), \quad n \ge k,$$
(7)

where $s_0, s_1, \ldots, s_{k-1}, p_1, p_2, \ldots, p_k$ are complex numbers.

Our natural question now becomes, for $k \ge 2$, what is an explicit expression for $G_n(k,a)$ is terms of $s_0, s_1, \ldots, s_{k-1}, p_1, \ldots, p_k$? If $s_0 = \cdots = s_{k-2} = 0$, $s_{k-1} = s_k = 1$, $p_1 = \cdots = p_k = 1$ and a = 0, then by theorem 2.2 we have $G_n(k,0) = g_n$. In [8], Rosenbaum gave the explicit expression for k = 2.

In this section, we give an explicit expression for $G_n(k,a) = p_1 G_{n-1}(k,a) + p_2 G_{n-2}(k,a) + \cdots + p_k G_{n-k}(k,a), \quad n \geq k$ in terms of initial conditions $G_0(k,a) = s_0, \quad G_1(k,a) = s_1, \quad \ldots, \quad G_{k-1}(k,a) = s_{k-1}, \quad k \geq 2.$

Let $\tilde{\mathbf{G}}_n(k) = (G_n(k,a), \ldots, G_{n-k+1}(k,a))^T$ for $k \geq 2$. The fundamental recurrence relation (7) can be defined by the vector recurrence relation $\tilde{\mathbf{G}}_n(k) = \tilde{Q}_k \tilde{\mathbf{G}}_{n-1}(k)$, where

$$ilde{Q}_k = egin{bmatrix} \mathbf{p} & p_k \ I_{k-1} & 0 \end{bmatrix} ext{and} \ \mathbf{p} = [p_1, p_2, \dots, p_{k-1}].$$

Let $\mathbf{s} = (s_{k-1}, \ldots, s_0)^T$. Then, we have, for $n \ge 0$, $\tilde{\mathbf{G}}_{n+k-1}(k) = \tilde{Q}_k^n \mathbf{s}$, and the characteristic

equation of \hat{Q}_k is

$$f(\lambda) = \lambda^k - p_1 \lambda^{k-1} - \cdots - p_{k-1} \lambda - p_k = 0.$$

If $R(f(\lambda), f'(\lambda)) \neq 0$, then the equation $f(\lambda) = 0$ has distinct k roots. **Theorem 3.1**: Let $f(\lambda)$ be the characteristic equation of the matrix \tilde{Q}_k . If $R(f(\lambda), f'(\lambda)) \neq 0$, then $G_n(k, a) = p_1 G_{n-1}(k, a) + p_2 G_{n-2}(k, a) + \cdots + p_k G_{n-k}(k, a)$ has an explicit expression in terms of s_0, \ldots, s_{k-1} .

Proof: If $R(f(\lambda), f'(\lambda)) \neq 0$, then the characteristic equation of \bar{Q}_k has k distinct roots, say $\lambda_1, \lambda_2, \ldots, \lambda_k$. Since the matrix \tilde{Q}_k is diagonalizable, there exists a matrix Λ such that $\Lambda^{-1}\tilde{Q}_k\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_k)$. Then $\tilde{\mathbf{G}}_{n+k-1}(k) = \Lambda \operatorname{diag}(\lambda_1^n, \lambda_2^n, \ldots, \lambda_k^n)\Lambda^{-1}\mathbf{s}$, and hence we have

$$G_n(k,a) = d_1\lambda_1^n + d_2\lambda_2^n + \dots + d_k\lambda_k^n = \sum_{i=1}^k d_i\lambda_i^n,$$

where d_1, d_2, \ldots, d_k are complex numbers independent of n. We can determine the values of d_1, d_2, \ldots, d_k by Cramer's rule. That is, by setting $n = 0, 1, \ldots, k-1$, we have

$$G_0(k,a)=d_1+d_2+\cdots+d_k, \ G_1(k,a)=d_1\lambda_1+d_2\lambda_2+\cdots+d_k\lambda_k,$$

:

$$G_{k-1}(k,a) = d_1 \lambda_1^{k-1} + d_2 \lambda_2^{k-1} + \dots + d_k \lambda_k^{k-1},$$

2003]

and hence

$$V\mathbf{d} = \mathbf{s}, \ \mathbf{d} = (d_1, d_2, \dots, d_k)^T.$$
(8)

Therefore, we now have the desired result from (8). \Box Recall that

$$ilde{Q}_k = egin{bmatrix} \mathbf{p} & p_k \ I_{k-1} & \mathbf{0} \end{bmatrix},$$

where $[\mathbf{p} = p_1, p_2, \dots, p_{k-1}]$. Then, in [1], we have the following theorem.

Theorem 3.2 [1]: The (i, j) entry $q_{ij}^{(n)}(p_1, p_2, \ldots, p_k)$ in \tilde{Q}_k^n is given by the following formula:

$$q_{ij}^{(n)}(p_1, p_2, \dots, p_k) = \sum_{(m_1, \dots, m_k)} \frac{m_j + m_{j+1} + \dots + m_k}{m_1 + \dots + m_k} \times {\binom{m_1 + \dots + m_k}{m_1, m_2, \dots, m_k}} p_1^{m_1} \dots p_k^{m_k},$$
(9)

where the summation is over nonnegative integers satisfying $m_1 + 2m_2 + \cdots + km_k = n - i + j$, and the coefficient in (9) is defined to be 1 if n = i - j.

Applying the $\tilde{\mathbf{G}}_{n+k-1}(k) = \tilde{Q}_k^n \mathbf{s}$ to the above theorem, we have

$$G_{n}(k,a) = q_{k1}^{(n)}(p_{1},...,p_{k})s_{k-1} + q_{k2}^{(n)}(p_{1},...,p_{k})s_{k-2} + \cdots + q_{kk}^{(n)}(p_{1},...,p_{k})s_{0}$$
$$= \sum_{i=1}^{k} q_{kj}^{(n)}(p_{1},...,p_{k})s_{k-j}.$$
(10)

From (9), we have

$$q_{kj}^{(n)}(p_1,\ldots,p_k) = \sum_{(m_1,\ldots,m_k)} rac{m_j+m_{j+1}+\cdots+m_k}{m_1+\cdots+m_k}
onumber \ imes igg(rac{m_1+\cdots+m_k}{m_1,m_2,\ldots,m_k} igg) p_1^{m_1}\ldots p_k^{m_k},$$

where the summation is over nonnegative integers satisfying $m_1 + 2m_2 + \cdots + km_k = n - k + j$, and the coefficient in (10) is defined to be 1 if n = k - j.

118

[MAY

Hence, from theorem 3.1 and (10),

$$egin{aligned} G_n(k,a) &= \sum_{j=1}^k q_{kj}^{(n)}(p_1,\ldots,p_k)s_{k-j} \ &= \sum_{i=1}^k d_i\lambda_i^n. \end{aligned}$$

Example: In (6) and (7), if we take a = 0, $s_0 = s_1 = \cdots = s_{k-3} = 0$, $s_{k-2} = s_{k-1} = 1$ and $p_1 = \cdots = p_k = 1$, then

$$G_0(k,0) = \cdots = G_{k-3}(k,0) = 0, \ G_{k-2}(k,0) = G_{k-1}(k,0) = 1,$$

and for $n \ge k \ge 2$,

$$G_n(k,0) = G_{n-1}(k,0) + G_{n-2}(k,0) + \dots + G_{n-k}(k,0)$$

= $g_n = g_{n-1} + g_{n-2} + \dots + g_{n-k}.$

Let $\tilde{\mathbf{g}}_n^{(k)} = (g_n^{(k)}, \dots, g_{n-k+1}^{(k)})^T$. For any $k \ge 2$, the fundamental recurrence relation $g_n^{(k)} = g_{n-1}^{(k)} + g_{n-2}^{(k)} + \dots + g_{n-k}^{(k)}$ can be defined by the vector recurrence relation $\tilde{\mathbf{g}}_n^{(k)} = \tilde{Q}_k \tilde{\mathbf{g}}_{n-1}^{(k)}$.

Then, we have $\tilde{\mathbf{g}}_n^{(k)} = \tilde{Q}_k^n \tilde{\mathbf{g}}_0^{(k)} = \tilde{Q}_k^n (1, 1, 0, \dots, 0)^T$. Since \tilde{Q}_k has k distinct eigenvalues (see [5]),

$$g_n^{(k)} = d_1 \lambda_1^n + \dots + d_k \lambda_k^n.$$

Hence, we can determine d_1, d_2, \ldots, d_k from (8).

For example, if k = 3, then the characteristic equation of \tilde{Q}_3 is $f(\lambda) = \lambda^3 - \lambda^2 - \lambda - 1 = 0$, and hence

$$R(f(\lambda), f'(\lambda)) = egin{pmatrix} 1 & -1 & -1 & -1 & 0 \ 0 & 1 & -1 & -1 & -1 \ 3 & -2 & -1 & 0 & 0 \ 0 & 3 & -2 & -1 & 0 \ 0 & 0 & 3 & -2 & -1 \ \end{bmatrix} = 44
eq 0.$$

Thus $f(\lambda) = 0$ has 3 distinct roots. Suppose α , β and γ are the distinct roots of $f(\lambda) = 0$. Then we have

$$\begin{aligned} \alpha &= \frac{1}{3}(u+v) + \frac{1}{3}, \\ \beta &= -\frac{1}{6}(u+v) + \frac{i\sqrt{3}}{6}(u-v) + \frac{1}{3}, \\ \gamma &= -\frac{1}{6}(u+v) - \frac{i\sqrt{3}}{6}(u-v) + \frac{1}{3}, \end{aligned}$$

2003]

where

$$i = \sqrt{-1}, \ u = \sqrt[3]{19 + 3\sqrt{33}} \ {
m and} \ v = \sqrt[3]{19 - 3\sqrt{33}}.$$

So, we have

$$g_n^{(3)} = d_1 \alpha^n + d_2 \beta^n + d_3 \gamma^n,$$
(11)

and hence

$$egin{bmatrix} 1 & 1 & 1 \ lpha & eta & \gamma \ lpha^2 & eta^2 & \gamma^2 \end{bmatrix} egin{bmatrix} d_1 \ d_2 \ d_3 \end{bmatrix} = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}.$$

 \mathbf{Set}

$$\delta = \det egin{bmatrix} 1 & 1 & 1 \ lpha & eta & \gamma \ lpha^2 & eta^2 & \gamma^2 \end{bmatrix}, \; \delta_lpha = \det egin{bmatrix} 0 & 1 & 1 \ 1 & eta & \gamma \ 1 & eta^2 & \gamma^2 \end{bmatrix}, \; \delta_eta = \det egin{bmatrix} 1 & 0 & 1 \ lpha & 1 & \gamma \ lpha^2 & 1 & \gamma^2 \end{bmatrix},$$

and

$$\delta_\lambda = \det egin{bmatrix} 1 & 1 & 0 \ lpha & eta & 1 \ lpha^2 & eta^2 & 1 \end{bmatrix}.$$

Then we have

$$d_1=rac{\delta_lpha}{\delta},\; d_2=rac{\delta_eta}{\delta},\;\; ext{and}\;\; d_3=rac{\delta_\gamma}{\delta}.$$

As we know, the complex numbers d_1 , d_2 , and d_3 are independent of n.

We can also find an expression for $g_n^{(3)}$ in [6] follows:

$$g_n^{(3)} = \frac{\left(g_{n-1}^{(3)} + g_{n-2}^{(3)}\right)(\beta - \gamma) - (\beta^n - \alpha^n)}{(\alpha - 1)(\beta - \gamma)}.$$
(12)

So, by (11) and (12),

$$\frac{\delta_{\alpha}\alpha^n + \delta_{\beta}\beta^n + \delta_{\gamma}\gamma^n}{\delta} = \frac{\left(g_{n-1}^{(3)} + g_{n-2}^{(3)}\right)(\beta - \gamma) - (\beta^n - \alpha^n)}{(\alpha - 1)(\beta - \gamma)}.$$

[MAY

GENERALIZED FIBONACCI FUNCTIONS AND SEQUENCES OF GENERALIZED FIBONACCI FUNCTIONS

Similarly, if k = 2, then

$$g_n^{(2)} = F_n = \frac{1}{\lambda_1 - \lambda_2} (\lambda_1^n - \lambda_2^n),$$
 (13)

where λ_1 and λ_2 are the eigenvalues of Q_2 . Actually

$$\lambda_1 = rac{1+\sqrt{5}}{2} ext{ and } \lambda_2 = rac{1-\sqrt{5}}{2}.$$

In this case,

$$d_1 = rac{1}{\lambda_1 - \lambda_2} = rac{1}{\sqrt{5}}, \ \ d_2 = rac{1}{\lambda_2 - \lambda_1} = -rac{1}{\sqrt{5}}$$

and (13) is Binet's formula for the *n*th Fibonacci number F_n .

ACKNOWLEDGMENTS

This paper was supported by Korea Research Foundation Grant (KRF-2000-015-DP0005). The second author was supported by the BK21 project for the Korea Education Ministry.

REFERENCES

- M. Bicknell and V.E. Hoggatt, Jr. Fibonacci's Problem Book. The Fibonacci Association, 1974.
- [2] M. Elmore. "Fibonacci Functions." The Fibonacci Quarterly 4 (1967): 371-382.
- [3] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants. Birkhauser, Boston, 1994.
- [4] G.Y. Lee and S.G. Lee. "A Note on Generalized Fibonacci Numbers." The Fibonacci Quarterly 33.3 (1995): 273-278.
- [5] G.Y. Lee, S.G. Lee, J.S. Kim and H.K. Shin. "The Binet Formula and Representations of k-generalized Fibonacci Numbers." The Fibonacci Quarterly **39.2** (2001): 158-164.
- [6] G.Y. Lee, S.G. Lee and H.G. Shin. "On the k-generalized Fibonacci Matrix Q_k ." Linear Algebra and Its Appl. 251 (1997): 73-88.
- [7] E.P. Miles. "Generalize Fibonacci Numbers and Associated Matrices." Amer. Math. Monthly 67 (1960):745-752.
- [8] R.A. Rosenbaum. "An Application of Matrices to Linear Recursion Relations." Amer. Math. Monthly 66 (1959): 792-793.

AMS Classification Numbers: 11B37, 11B39, 15A36

 $\textcircled{}{}$

2003]