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1. I N T R O D U C T I O N 

Let (un)n>o be a sequence of positive integers. We denote by G(u) the multiplicative 
subgroup of Q+ generated by all the members of (wn)n>o- That is, 

G(u) = { < J • < ! • . . . • < * ! § > 0 , 0 < n i <n2 < ••• < n S 3 a n d a ^ E Z* for i = 1 ,2 , . . . , *} . 
(1.1) 

In some cases, the group G(u) is very easy to understand. For example, if (un)n>o is a 
geometrical progression of first term UQ and ratio r — UI/UQ, then 

G(u) = {<r^ | for some a j G Z}. (1.2) 

For a sequence (ten)n>o we also denote by 

U = {m E N|ra = un for some n > 0}. (1.3) 

That is, U is the range of the sequence (un)n>o. In this paper, we look at the set G(u) D N . 
Certainly, U C G(u) D N C N . It is easy to see that the extreme cases of the above inclusions 
can occur in some non-trivial instances. For example, if un = n\ for all n > 0, then m = 
um/um-i for all ra > 1, therefore G(u) = N . However, if (un)n>o is an arithmetical progression 
of first term 1 and difference k > 1, then G(u) D N = U. Indeed, notice that 1 = UQ E 17, and 
that if we write some rn E G{u) n N , m ^ l a s 

m ~ I I u™i> ^or s o m e s — ^ a n ( i «» E Z* for i = 1,2,..., s, (1.4) 
*=i 

then we can rearrange equation (1.4) as 

m n un?i= n <• ( L S ) 
1<«<S 1<*<S 
ai<0 « i > 0 
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We may now reduce equation (1.5) modulo k and get rn = 1 (mod fc), therefore m E U. 
While both the group G{u) and the semigroup G{u) C\ N are very easy to understand for the 
above mentioned sequences (un)n>o, not the same is true when (un)n>o is a non-degenerate 
linearly recurrent sequence. In this note, we investigate the group G(u) and the semigroup 
G(u) fl N when (un)n>o is a Lehmer sequence. 

Recall that if L and M are two non-zero coprime integers with L — AM ^ 0, then the nth 

Lehmer number corresponding to the pair (L, M) and denoted by Pn is defined as 

{ an-0n 

an-j3n 

a*-6* 

for n = l(mod 2), 

3 ^ - otherwise, 

where a and /3 are the two roots of the characteristic equation 

x 2 - ^ x + M = Q. (1.7) 

To avoid degenerate cases, we assume that a//3 is not a root of 1. In what follows, we 
denote by un = \Pn\ and by G = G(u). Our main results say that though the set G is 
topologically dense in the set of non-negative real numbers, its asymptotic density in the set 
of positive integers is zero. Before stating it, we introduce one more notation. 

For every positive real number x let G{x) = G fl N n (0,x). For every finite set of prime 
numbers V, let G-p be the subgroup of Q!j_ generated by G and V. If x is a positive real 
number, we denote G*p(x) = G-p f) N fl (0, x). 

We have the following results. 
T h e o r e m 1: The set G is dense in the set of non-negative real numbers. 
T h e o r e m 2: For any positive number S there exists a computable constant C depending on 
8, V, L and M such that 

#G"« < o&? (L8) 

holds for all x > C. 
The above Theorem 2 has the following immediate consequence. 

Corollary 1: 
(i) Both the group G and the factor group Q!j_/G are infinitely generated. 

(ii) There exist infinitely many prime numbers p which do not belong to G. 
(iii) There exist infintely many n 's such that n\ does not belong to G. 

Since the group G is a subgroup of Q!j_, we know that G contains no torsion elements. 

However, this is not necessarily the case for the factor group Q+/G . Let G = Q+/G. Since G 

is abelian, it follows that G has a torsion part, let's call it T(G), and 

F(G) := ^ (1.9) 
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is torsion free. The following result is slightly stronger version of the above Corollary. 
Proposition: The group F(G) contains a free subgroup of infinite rank. 

The following Corollary follows from the above Proposition and is a stronger version of 
Corollary 1 (ii). 
Corollary 2: There exist infinitely many prime numbers p such that pk $ G for any positive 
integer k. 

3. T H E P R O O F S 

T h e P r o o f of T h e o r e m 1: It is proved in Lemma 2 of [3] that if p and q are two coprime 
integers with 1 < p < q, then each non-negative real number is a limit-point of the set of all 
fractions of the form jpmg~"n, where m and n are positive integers. Since for all positive integers 
k and s we have (ukjU3) = W(&5S), the above result applied to positive integers us/u^^ and 
uk/u(k,s) proves Theorem 1. 

We now proceed to the proof of Theorem 2. 
In what follows, we recall the definition of a primitive prime divisor of a term of a Lehmer 

sequence. It is well known that i^nl^m 
whenever n\m. A primitive prime divisor of um is 

defined to be a prime number p\um such that pfun for any n < m. Moreover, an intrinsic 
primitive prime divisor of um is defined to be a primitive prime divisor p of um such that p 
does not divide the discriminant A = L — 4M of (un)n>o. In order not to complicate the 
terminology, in what, follows we will refer to an intrinsic primitive prime divisor of um as 
simply a primitive divisor of um. By results of Ward [5] for the case in which (un)n>o has 
positive discriminant, and Bilu, Hanrot and Voutier [1] for the general case, we know that um 

has a primitive divisor for all m > 30. It is also well known that any primitive divisor p of um 

satisifies p = ±l (mod ra). 
For every finite set of prime numbers V we denote by 

Mv = max(30,p + l\p G V). (2.1) 

When V is empty, we simply set M = M® = 30. From the above remarks, it follows that 
whenever n > M<p, un has primitive divisors and none of them belongs to V. 

We begin by pointing out a large free subgroup of G. 
L e m m a 1: 
(i) Let Gi be the subgroup of G generated by the set {wn}i<n<30 and C?2 be the subgroup of G 
generated by the set {wn}n>30- Then, 6?2 is free on the set of generators {un}n>$Q and G is 
the direct product of G\ and C?2-
(ii) Let Gi?p be the subgroup ofG-p generated by the set P U { % } n < M P let G^^v be the subgroup 
ofG*p generated by the set {un}n>Mv- Then, Gzp is free on the set of generators {un}n>Mv 

and G-p is the direct product of G\j> and G2,v-
T h e P r o o f of L e m m a 1: We prove only (i) as the proof of (ii) is entirely similar. It is clear 
that G is the product of G\ and (?2. In order to prove that this product is direct and that t?2 
is indeed free on the indicated set of generators, it suffices to show that if 

J J u®i = 1, for some s > 1, « J G Z * and m < n^ < - - • < n5, (2.2) 
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then ns < 30. But this follows right away because un has a primitive divisor of n > 30. 
Let; g E Gp> \ G\,v- By the definition of G-p \ G\,p, it follows that one may write 

per i=i 

where j3p E Z for all p E P , s > 1, a* E Z* for i = 1 ,2, . . . , 5 and n\ < n^ < • • • < ns with 
ns > M<p. Of course, the above representation (2.3) for g need not be unique. However, by 
Lemma 1 above, we get that both the index ns and the exponent as oiung do not depend on the 
representation of g of the form (2.3). Thus, we may define two functions / , h : G-p\Gi,-p -» Z 
by f(9) — ns and h(g) = as. We also extend the function / to the whole G-p by simply setting 
f(g) — M-p when g E G\^p. 

The following observation is relevant in what follows. 
L e m m a 2: Assume that g E G-p \ G\j>. If g E N ; then h(g) > 0. 
T h e P r o o f of L e m m a 2: This is almost obvious. Indeed, assume that g is given by formula 
(2.3) and that as < 0. Since ns > Mp, it follows that uns has primitive divisors. Pick a 
primitive divisor q of uns. By the remarks preceeding Lemma 1, we know that q $ V. Since 
g E N and as < 0, formula (2.3) implies that 

Q\UP I I uh (2-4) 
•pEV l<j<ns 

which is obviously impossible. 
T h e P r o o f of T h e o r e m 2: We assume that \a\ > |/?|. Notice that \a\ > 1. For any n > 30, 
we denote by Pr{n) the primitive part of un. That is, Pr(n) is the product of all the primitive 
prime divisors of un at the powers at which they appear in the prime factor decomposition of 
un. It is well known (see [4]), that if we denote by Q all the primitive roots of unity of order 
n for i = 1,2, . . . , 0(n), then 

where 

is the homogenized version of the nth cyclotomic polynomial and q(n) is either 1 or the largest 
prime factor of n. We also denote by Prp{n) the primitive part of un which is coprime to 
all the prime numbers p E V- By using linear forms in logarithms, both complex and p-adic 
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with respect to the primes p E V (see [4]), it follows easily that there exist two effectively 
computable constants c\ and c% depending on L, M and V such that 

Prv(n) > | a |^W-cidWiogn3 whenever n > c2, (2.6) 

where d(n) is the number of divisors of n. Since d(n) < ne for every e > 0 provided that n is 
large enough (with respect to e) and since 

(pin) > -— , whenever n> C4 (2.7) 
log log n 

for some absolute constants C3 and c^ it follows that there exists a constant C5 (depending on 
L, M and V) such that 

Pr*p{n) > e^, whenever n > c5. (2.8) 

We may assume that cs > 30. 
We now look at the elements g e G-p fl N . Let y be a very large positive real number 

(y > 30), and set 
A(y) = {geGrnN\f(g)<y}, (2.9) 

and 
B(y) = {geGvnN\f(9)>y}, (2.10) 

Certainly, G-p f l N = A(y) U B{y) holds for every y. For a real number x set A(x,y) = 
A(y) fl (0, x) and J5(x, y) = B(y) fl (0, x). Thus, in order to bound the cardinality of G<p(x)3 it 
suffices to bound both the cardinality of A(x,y) and B(x,y). 

We start by bounding the cardinality of A(x,y). Assume that q\ < q2 < • • • < qt are all 
the possible prime factors of an integer g e A(x,y). Then, 

k 

U^Up'Uur ( 2 - n) 
i = l p€*P j < ^ 

Since V is fixed and since un < (2 |a | ) n holds for all n > 1, it follows that there exists a 
constant ce (depending on i , M and "P) such that 

k 

E 
i= i 

H ^ < e ^ 2 . (2.12) 

Prom the Prime Number Theorem, we know that there exists an absolute constant C7 > 0 such 
that 

eC7fc<n<fc. <2-13) 
« = 1 
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Hence, 
„2 k < cgy', (2.14) 

where eg = CQ/C^J. Assume now that g E A{x^y) has the prime factor decomposition 

k 

g = n«r> w h e r e Mi > 0 for i = 1,2,...,fc. (2.15) 

Since g < x, it follows that 

logx < l o g x forani = 1 2 ^ ( 2 o l 6 ) 

"" logq{ - log 2 

Prom inequalities (2,14) and (2.15), it follows that there exists a constant eg such that 

#A(x, y) < (log x)C9y2, for all x > 3. (2.17) 

The above inequality (2.17) holds for all y > 30. 
We now bound the cardinality of B(x,y) for y large enough. 
Assume that y > M-p and assume that g G B(x,y). Prom the definition of J3(x,y), it 

follows that f(g) > y. Moreover, from Lemma 2, it follows that h(g) > 0. By writing 

9=RpfipIl<h (2-18) 

where {fp e Z,« > 1, a* E Z* for i = 1,2, . . . ,« and m < n% < • • • < na , with ws = f(g) > y 
and a s = h(g) > 0, we get that the positive integer g is a multiple of Pr*p(f(g)). There are at 
most 

PrvUi.9)) 

positive integers less than x which are multiples of Pr-p(f(g)). Hence, this argument shows 
that the cardinality of S(x , y) is bounded above by 

*«*•»> s E 5 = j j ) - <"9> 

We now assume that y > c§ and use the lower bound (2.8) on Pr-p(t) for t > y > c& to infer 
that 

#s(*>t0<£-5s- (2-20) 
*>» e 
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By inequality (2.20), it follows that there exists an absolute constant CIQ such that 

#B(x,y)<C-^-x. (2.21) 

Combining inequalities (2.17) and (2.21), we get that 

Gv{x) < (logs)092'2 + c^0- • x, provided that x > 3 and y > c5. (2.22) 

All it remains to show is that one may choose y (depending on x) such that 

(2.23) (log*) + ^ *< {lQgxy 

To see how (2.23) holds, we choose any e > 0 small enough and set 

y=(logx)1*-e. (2.24) 

Clearly, y > c& when x is large enough. Moreover, the inequality 

<10^™' < W <2'25> 

is equivalent to 
(c9y

2 + 6) log log x < log x - log 2, 

or 
(cg^ogx) 1 " 2 6 + 8) logloga? < logsr - log2, 

which certainly holds for x large enough. Finally, the inequality 

^ • * < o 7 r i L ^ (2-26) 
e^/y 2( logx)5 v ; 

is equivalent to 

1 
log 2ci0 + g loS V + * loS loS x <Vv> 
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or 

log2c 1 0 + f- I - - e j - f < n l o g l o g x < ( logs)*"* , 

which is again satisfied for x large enough. Inequalities (2.25) and (2.26) imply inequality 
(2.23). 

Theorem 2 is therefore proved. 
T h e P r o o f of Coro l la ry 1: 
(i). The fact that G is infinitely generated follows from Lemma 1. Assume now that Q + / G 
is finitely generated. It now follows that there exists a finite set of prime numbers, call it P, 
such that G-p = Q+. It now follows that G-p f l N = N , which contradicts the Theorem 2. 
(ii). If there are only finitely many prime numbers p not belonging to G, then Q + / G is finitely 
generated, which contradicts (i). 
(iii). Assume that there exists no E N such that n\ E G for all n > HQ. Since n = n\/{n —1)! E 
G, whenever n > no + 1, it follows that Q + / G is finitely generated, which contradicts (i). 

We now give the proof of the Proposition. This proof is based on the following Lemma 
due to Schinzel (see [2]). 
L e m m a 3: There exists a strictly increasing sequence of integers (mj)i>i with mi > 30 such 
that umi, has at least two primitive divisors. 

Using Lemma 3 above and the Axiom of Choice, it follows that one may select an infinite 
set of prime numbers Q — {(Z»}"t>i such that q^ is a primitive divisor of umi for all * > 1. We 
introduce on Q the order relation induced by the natural ordering of the orders of apparition 
m,i$ of the qiS and denote this by qi -< qi+i for all % > 1. Based on Lemma 3 above, we infer 
the following auxiliary result. 
L e m m a 4: With the above notations? let G3 be the subgroup of Q!j_ generated by the set Q. 
Then, G(1G 3 = {1}. 
T h e P r o o f of L e m m a 4: Assume that this is not so and let g E Gfl G3 \ {1}. It follows that 

s = n < ; = IK;> (2-27) 
* = i j = i 

where s > 1, t > 1, n\ < 712 < • • - < ra5, k\ < &2 < * • • < h and a», /Jj E Z* for i — 1 ,2, . . . , s 
and j = 1,2, . . . , £ . We first show that ns — m&t. Indeed, since f̂ct | I I i=i Mn» ? a n d Qkt *s a 

primitive divisor of wmfc , it follows that there exists some i with 1 < i < s such that raj-Jra*. 
In particular, ns > m^t. Assume that ns > m&t. Since m&t > m\ > 30, it follows that uns 

has a primitive divisor, call it q. Since q is a primitive divisor of ung and ns > ni for all i < s, 
it follows that q = qkd for some j . < t. But this impossible because #*.. is a primitive divisor of 
umk. and rrikj <rrikt < ns. Thus, ns = mkt. Now uUs has at least two primitive prime 
divisors. Pick a primitive prime divisor q of uUs different than g&t. Arguments similar to the 
preceeding ones show that q$ini foi i < s and q ^ q^ for any j < t. This contradicts formula 
(2.27). 
T h e P r o o f of t h e P ropos i t ion : The proof of the Proposition is contained in Lemma 3. 
Indeed, by Lemma 3, it follows easily that the factor group G = Q + / G contains the subgroup 
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GG3/G = G$. This subgroup is free on the basis {qG\q E Q}. Thus, this subgroup can be 
identified with a subgroup of F(G) and therefore F(G) has a free subgroup of infinite rank. 
T h e P r o o f of Coro l la ry 2: This follows from the Proposition. Indeed, assume that there 
exist only finitely many prime numbers, call them pi,P2? • • • ?Ps? such that whenever q is a 
prime number with q^ p% for any « = l , 2 , . . . , s , there exists k > 0 (depending on q) such that 
qk G G. Since qk £ G is equivalent to the fact that the coset qG has exponent k in the factor 
group G = Q + / C , it follows that qG G T{G), whenever q ^ pt for i = 1 ,2, . . . , s. Hence, F(G) 
is finitely generated, which contradicts the Proposition. 

3. A N E X A M P L E 

The well known Fibonacci sequence (Fn)n>o is given by F 0 = 0, Fi = 1 and Fn+2 = 
Fn+i + Fn for all n > 0. The set of its terms U = {Fn}n>0 coincides with the set of terms of 
the Lehmer sequence corresponding to the pair (L,M) = (1,1). For this sequence, the only n's 
for which Fn does not have a primitive divisor are n = 1,2,5,6,12. Since F\ — F2 — 1, F$ = 
5,2*6 = F$ and F& = F^F^, it follows, by Lemma 1 from the previous section, that the group 
G for the Fibonacci sequence is free having the set {-Fn}n^i,2,6,i2 as basis. Since we know that 
G f l N has density zero, it follows that G does not contain all the positive integers. An easy 
computation shows that the first positive integer in N \ G is 37. 

For this sequence, one can point out a nice structure by means of a trace map. That is, 
let g G G \ {1} and write g as 

f = i 

for some s > 1, where a* E Z* and 3 < n i < ri2 < . . .ns are such that nj ^ 6 or 12 for any 
i= 1 ,2, . . . , s. From the above arguments, we know that every g G £? \ {1} can be represented 
in this way and that such a representation is unique. Thus, we may define the trace of g as 

J(9) = Ylaini' ^ 

When g = 1, we simply set 1(1) = 0. It is easy to see that I: G —> Z is a group homomorphism 
whose kernel is GQ = {g E G\I(g) = 0}. Moreover, G/GQ = Z. The subgroup GQ of G has a 
topological interpretation in the sense that it contains elements which are arbitrarily close to 
the identity 1 of G. 

4. C O M M E N T S A N D P R O B L E M S 

While our Theorem 2 guarantees that the density of the set G f l N is zero, it seems 
reasonable to conjecture that, in fact, a much better upper bound for cardinality of the set 
G*p{x) than the one asserted at (1.8) holds. Thus, we propose the following problem. 
P r o b l e m 1: Prove that for every e > 0, there exists a computable constant C depending only 
on e, V, L and M such that 

# { m G G p f l N|ra < x} < xe 
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holds for all x > C. 
Assume that mi < m2 < • • • < mn < . . . are all the elements of G n N . Our result shows 

that for every fc, there exists a computable constant C& such that mn > n(logn)k holds for all 
n > Ck» In particular, the series 

is convergent. It is certainly a very difficult problem to decide whether or not the number 
given by (4.1) is rational or irrational (or algebraic, respectively, transcendental). 

Another interesting question to investigate would be the distribution of the positive inte-
gers (rrii)i>i. By Theorem 2, we know that the set of those integers has density zero. One may 
ask how fast does the sequence (rrii)i>i grow. For example, if it were true that the sequence 
of differences m^+i — ra» diverges to infinity with i, then we would get an alternative proof for 
the fact that G f l N has density zero. Unfortunately, such a statement need not be true in 
general., Indeed, let (Fn)n>o be the Fibonacci sequence mentioned above and let (Ln)n>Q be 
its Lucas companion sequence. Then the identity 

Fl - Fn+1Fn„t = ( - l ) n + 1 , for all n = 0 , 1 , . . . (4.2) 

provides infinitely many examples of positive integers i for which m^+i — m* = 1. Moreover, 
either one of the identities 

. Z » - 5 2 £ = 4 . ( - l ) » , 

or 
L2n-Li = 2.(-ir+1 

which hold for all n = 0 , 1 , . . . , together with the fact that Ln = F2n/Fn E G for all n > 1, 
provides infinitely many examples of positive integers i for which rn^+i — m» < 4. In our 
Proposition, we pointed out that the group F(G) contains a free subgroup of infinite rank but 
we said nothing about the subgroup T(G). Concerning the subgroup T(G), we propose the 
following conjecture, 
Problem 2: Prove that T(G) is finite. 

Finally, it could be of interest to analyze the dependence of the group G of the starting 
Lehmer sequence (Fn)n>o» More precisely, assume that (Pn)n>o and {Pr

n)n>o are two Lehmer 
sequences. Let-ten = \Pn\ and u'n = \P^\ and define G, G1 and [7, U1 as before. We offer the 
following conjecture. 
Problem 3: Prove that if GC\G! is infinitely generated, then U f)U! is infinite. 

It is well-known, and it follows from the theory of linear forms in logarithms, that if UDU1 

is infinite, then there exist two arithmetical progressions (an + &)n>o and (en + d)n>o with 
ah ^ 0 such that \Pan+b = \Pcn+d\ h°lds for all n > 0. Thus, Problem 3 above is just a 
generalization of this well known result from diophantine equations. 
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