
A CLASS O F F I B O N A C C I IDEAL L A T T I C E S I N z[Ci2] 

Michele Elia 
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy 

J . Carmelo In te r lando* 
Departamento de Matematica, Universidade Estadual Paulista - UNESP 

Rua Crist6vao Colombo, 2265, 15054-000, Sao Jos«§ do Rio Preto, SP, Brazil 
(Submitted April 2001-Final Revision July 2001) 

1. I N T R O D U C T I O N 

Lattices occur in many different areas of science and engineering. They are used to define 
dense sphere packings in ^-dimensional spaces [5], and direct applications of them are found in 
number theory, in particular, to solve Diophantine equations [1]. There are further applications 
found in numerical analysis, for example, when evaluating n-dimensional integrals [5, p. 11-
12]. In modern digital communication systems, lattice constellations are used to send encoded 
information through noisy channels, [3, 5, 10]. In this application, lattices with dense sphere 
packings are desirable. Recently it has been shown that algebraic lattices (those originating 
from rings of integers via canonical embedding of number fields) can be linearly labeled by 
elements of a finite field, facilitating the encoding and decoding processes [6]. Prom the mid-
nineties on, concrete applications of lattices began appearing in cryptography [9]. In particular, 
the NP-hardness of the famous lattices shortest vector problem, namely the problem of finding 
a lattice point nearest to the origin, was proved by Ajtai [2] in 1997. Similar tools were used 
to study the hardness of the most significant bits of the secret keys in the Diffie-Hellman and 
related schemes in prime fields [9, p. 14]. Recall the Diffie-Hellman key exchange protocol: 
Alice and Bob fix a finite cyclic group G and a generator g. They respectively pick random 
a,h E [1, \G\] and exchange ga and gb, The secret key is gab. An interesting realization 
of this public key exchange is based on quadratic number fields with large class number [8, 
p. 261] wrhere the cyclic group is provided by the class groups. Proving the security of the 
Diffie-Hellman protocal has been a challenging problem in cryptography. 

It has long been known that several dense lattices are algebraic and, in particular, originate 
from ideals in rings of integers. We refer to these lattices as ideal lattices. Remarkably, the 
densest four-dimensional lattice, namely D^ is generated by the ideal (1 — C8)^[Cs] where Cs 
is a primitive eighth root of unity. A good measure of packing density is the center density, 
defined as the ratio between the lattice density (the proportion of the maximum space that is 
occupied by nonoverlapping spheres centered in lattice points) and the volume of a sphere of 
radius one [5, p. 13]. 

Let F be an algebraic number field generated by a root of m(x), an irreducible polynomial 
of degree n over Q. Let us assume that m(x) has r\ real roots and 2r2 complex roots. The 
center density 7 of an ideal lattice of F is given by 

V 2 ; N¥(j)^d(¥)/¥^ 
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where d(¥) is the field discriminant, Nw(J) is the ideal norm., and d^ is the minimum square 
Euclidean distance between lattice points^ see [5, p. 10] or [7, Exercise 2.43]. D4 is the only 
four-dimensional lattice possessing a center density equal to | 3 [5, p. 9], the maximum achiev-
able in that dimension. On the other hand5 in this paper we exhibit a sequence of lattice (An) 
generated by principal ideals (Fn — (12^+2)2^12] in ^[£12] whose center densities approach | 
asymptotically. The sequence (zn) of complex numbers where zn = Fn — (^12-^+2? ^0 = — Ci2> 
and zi = 1 — 2("i2 satisfies Fibonacci's recurrence (see [4]), and so we refer to An as Fibonacci 

s2 
ideal lattices. We show that the center density j n of An is a rational number 4 ^ - which 

approaches | asymptotically as n goes to infinity. The integers Sn and A„ satisfy two lin-
ear recurring sequences related to Fibonacci and Lucas numbers. The theta series [5, p.45] 
0An(^) = YlxeA ^X°X5 where z is a complex variable and q = e7™*, is an expression made 
of Jacobi theta functions. The An are definitively different from D4 because the respective 
kissing numbers are 12 and 24. The kissing number of a sphere packing in any dimension 
is defined as the number of spheres that touch one sphere [5]. Given a lattice A in HHN with 
minimum distance «Jm5 we can think of the points of A as being centers of equal nonoveiiapping 
AT-spheres of radius dm/2. Then the kissing number of A is the kissing number of this packing 
just described. Notice that the theta series of A provides us with the kissing number r of A, 
since Q(z) = 1 + rqd™ + . . . [5]. 

The following sequences related to Fibonacci and Lucas numbers will be used in the proofs: 

an = Fl + Fl+2 = i ( 3 L 2 n + 2 + 4 ( - l ) » + 1 ) ; (1) 

bn = FnFn+2 = F*+ 1 .+ ( - 1 ) B + 1 = ~(L2n+2 + 3 ( - l ) " + 1 ) ; 

an - 3bn = ( -1 )" . 

(2) 

(3) 

The golden section 00 = ^~~ and w = 1 — w are the roots of x2 — x — 1 [11]. 

2. C E N T E R D E N S I T Y 

An integral basis for the ring Z[&2] is B = {l?Ci2?Ci2?Ci2} where C12 is a root of the 
clyclotomic polynomial x4 — x2 + 1. A real embedding a yields the generator matrix of A0 

So = 

1 
3/3 

2 
1 
2 
0 

0 
1 
2 

\ / 3 
2 
1' 

1 
-^1 

2 
1 
2 
0 

0 
1 
2 
\/Z 

2 
1 
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A generator matrix Bn of An is obtained as the product B0M(zn), where M(z„) belongs to 
an integral matrix representation of Z[Cu] with respect to basis B. We have 

M(Ci2) -

0 1 0 0 
0 0 1 0 
0 0 0 1 

- 1 0 1 0 

M(zn) = 

F 
0 
0 

n+2 

— -Pii+2 
F 
0 
0 

0 
—Fn+2 

F„ 
—Fn+2 

0 
0 

— F„+2 
Fn 

and 

Bn = B0M(zn) = ~2~Fn + 2 ^ + 2 

•Pn+2 

--Pn-+2 
2 -^n+2 "r" 2 ^ ^ 

2 1 ™ 
F» 

2-^n+2 

Fn 

-Fn-2 - W , VI] 
I P 
2

rn -2R n+2 

—Fn+2 

~Y~Fn+2 + 2-^n 
VI F 
2 r n 

2 Fn+2 

The squared Euclidean norm in An is given by the quadratic form Q(x) = xTB^Bnx with 
x G Z4. The positive definite symmetric matrix of this quadratic form results in 

An — J3n Bn — 

XFl + F*+2) - 3 F n F „ + 2 

—3FnFn+2 2(Fn + Fn+2) 
F„ + Fn+2 -3i r„i r„+2 

0 Fn
2 + Fn

2
+a 

K+n+2 2 0 2 
—3FnFn+2 i ^ + Fn+2 

1(Fl + Fl+2) -3FnFn+2 
—3FnFn+2 2(Fn + Fn+2) 

Writing Q{x) = xTAnx = xT{U-1)TUTAnUU-lx == x T ( t / - 1 ) T C„C/ - 1 x , we consider the 
transformation of An by the matrices 

U = 

-1 
0 
0 

L0 

0 
1 
0 

_ 1 
0 

1 
2 

0 
1 
0 

0 
0 
0 
1 

and U 1 = 

1 0 I 01 
0 1 0 0 
0 0 1 0 
.0 0 1 

to produce a block diagonal matrix 

Cn — 
2 ( ^ + ^ + 2 ) 

—3FnFn+2 
0 
0 

- 3 F n F n + 2 

1 ( ^ + ^+2) 
0 
0 

0 
0 

1 ( ^ + ^+2) 
-3FnFn+2 

0 
0 

—3FnF„+2 
2(FnFn+2) 
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Thus, setting gn = 2an + 2 ( - l ) n a n — 1 and making use of the identity (3), Q{x) is written as 
a linear combination of four squares 

Q(z) = ^ { M 2 ^ i + ^ 3 - ^ 2 ) + ( - l ) n ^ (4) 

This expression is conveniently written as Q(x) = Q(xi,X3,X2) + Q(ff43#2>#3)> by defining 

Q(ui, ti2, us) = -—{[an(2ui +u2- 1*3) + (~l)nu3]2 + gnu\}. 

d4 

The center density 7n of a Fibonacci ideal lattice is j n = m . , where d(¥) = 144, the 
' ' 4iVF(^n)y/d(F)' V ; ? 

norm of the principal ideal znZ[£i2] is the field norm of zn 

Nw(zn) = An = Ft - FlFl+2 + F*+2 = a2
n- 3b2

n, 

and, given (4), the squared minimum distance is 

d2
m=Sn = 2(F* + F 2

+ 2 ) - (1 - ( -1)") = 2an-l + ( - 1 ) " . (5) 

Therefore, 

_ [2an - (1 - ( -1)") ] 2
 = [2an - (1 - ( -1)") ] 2

 = Sj „ 1 / 1 \ 
T n 16 • [3a2 - 962] 4 8 . [ 2 a2 + 2 ( - l ) » a B - 1] 48 • A„ ~ 8 + {a* J' 

where the asymptotic expression shows that the convergence is exponential as n goes to infinity. 
Some initial terms are 

1 4 25 196 5329 37249 255025 
7 0 = 777,71 = ™>72 = 7 ^ > 7 3 = T 5 ^ T ' 7 4 = 17T7T7^>75 = o n n c o o , 7 6 12' u 39' ' 219' ,d 1623' '* 43212' '° 299532' ,0 2044236' 

Sequence A n . The sequence A n = F* - F*F%+2 + F*+2 = (F„2 + F 2
+ 2 ) 2 - 3F„2F„2

+2 satisfies 
a fifth order linear recurrence 

A n + 5 = 5 A n + 4 + 15A n + 3 - 15A n + 2 - 5 A n + 1 + A n , 

with initial values A0 = 1, Ai = 13, A2 = 73, A 3 = 541, and A 4 = 3601. In fact, the 
equation 

An - ^[6£ |n+2 + 6 i 2 n + 2 ( - l ) n + 1 + 25] 

= i t 6 ^ 4 ) " 4 " 1 + 6 ( ^ 4 ) n + 1 + 6 ( - o ; 2 ) n + 1 + 6(-aJ 2 ) n + 1 + 27] 
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shows that a;43uT 4
3 —a;2

? — uJ 2
3 and 1 are the roots of 

gA(x) = (x2 - L4x + l)(x2 + L 2 s + l)(x - 1) - x5 - 5x4 - 15x3 + l^x2 + 5x - 1, 

which is a characteristic polynomial of a fifth order linear recurrence. 
Sequence Sn. The squared minimum distance d2

n(n) — Sn = 2an — (1 — (—l)n) satisfies a 
fourth order recurrence 

#n+4 = 3$n+3 — 3<Jn+i + 5n, 

with initial values 5Q — 235\ = 83 82 — 205 and $3 = 56. In fact, the equation 

$n = j U ^ + 2 - | ( - l ) n - 1 - ^[6(a;2)n + 1 + 6(o7 2 f+ 1 - 3 ( - l ) » - 5] 

shows that a?2, a; 2, — 1, and 1 are the roots of 

gs(x) = (x2 - L2x + l)(x + l)(x - 1) = (x2 - ix + l)(x + l)(x - 1) = x4 - 3x3 + 3 x r 1, 

which is a characteristic polynomial of a fourth order linear recurrence. 

3. T H E T A S E R I E S 

In Chapter 4 of [5], Conway and Sloane describe basic techniques for theta series manip-
ulations. Their enlightening example of the hexagonal lattice [5, p. 110] helps us to study A0. 
This lattice has the following theta series 

6 A o (q) = 1 + 12g2 + 36g4 + 12q6 + 84g8 + 72g10 + 36g12 + . . . 

which is obtained using the quadratic form with symmetric matrix 

An = 

'2 0 1 0 ' 
0 2 0 1 
1 0 2 0 

,0 1 0 2, 

A direct computation yields 

eA o(g) = y q
x-x = y q2(4+4+*i**+*i+xi+*2X4) = s y ^ ^i+xi+xrxs) I = e2

Aexa(q2 

x€A0 xeA0 i s i , x 3€Z 

Furthermore, it is known [5, p. I l l ] that 
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where 6i(z) = 0{(O\z),i — 2,3? are Jacobi theta functions with q — e71 

T h e o r e m 1 For every n, the theta series of An 

©A (q) = y ^ qx U C^(u ) x = V * gQ(*i,*3,a>2)+Q(*4,:c2,*3) 

can 6e written in the following form 

©An(g) - e 0 0 ( n , ? ) 2 + 6 0 i (n 3 g) 2 + 2 0 n ( n , g ) • 81 0(n3g)3 (7) 

where Or3T2(n,q),r2lr3 E {0,1} can fee expressed in terms of Jacobi theta functions 

oo 

m=—oo 

<?s(^k) = E e2 i T O«+ '^m 2, and 04(£k) = *3(£ + £|*)-

Proof: In Q(xi ? x 3 ? x 2 ) and Q(u4,X25x3), the expressions 2^i+x3—a?2 and 2^4—X3+X2 are 
even numbers if £3 and x2 have the same parity, otherwise they are odd. Setting x2 = 2z2-\-r2 
and x3 = 2z3 + r3, where r2, ^3 E {0,1} and £2, £3 E Z5 we have 

Q(xi, x3, x2) = -—[(an(2[x1 + z3- z2) + r3) + 2z2 + r 2 ) 2 + gn(^z2 + r2)2] zan 

Q(x4,x2,x3) = — [(an(2[a?4 + z2 - z3] + r2) + 2z3 + r 3 ) 2 + £n(2z3 + r 3 ) 2 ] . 

The transformation mi = xi + z3 —£2,^2 = 2:2jm3 = z3, and m4 = 2:4 + ^2 -^3 is unimodular, 
thus for r3 and r2 fixed in 

1 
Q(xi,x3,x2) = ~—[(an(2wi + r3 - r2) + 2m2 + r 2 ) 2 + ^ ( 2 m 2 + r2)2] 

1 
Q(x4j x2j x3) = 2^-[(an(2m4 + r2 ~ r3) + 2m3 + r3f + gn(%m3 + r3)2] 
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the four variables mi , m23 m$, WI4 range independently over Z. Therefore (7) is obtained defin-
ing 

&r3r2(n,q) = J2 ^ [ k ( 2 m 1 + r 3 - r 2 ) + 2 r o 2 + r 2 ) 2
+ 5 n ( 2 r o 2 + , ^ ] ^ ^ = ^ ^ 

Now, setting m2 = anm + r and l = m i + m 3 with r E { 0 , 1 , . . . , an — 1}, we obtain 

Qw(n,9) = E E q^[M2i+T*-T2)+2r+r^ r2jr3 = 0,1. 

The infinite sums 

J^f g ^ [ ( ^ ( 2 £ + r 3 - - r 2 ) - f 2 r + r 2 ) 2 + ^ ( 2 a n m + 2 r + r 2 ) 2 ] r 2 j r 3 = 0 , l , r = 0, . . . , On - 1 

are actually products of Jacobi theta functions. This will be proved considering the exponent 
of q as a sum of three terms 

Bt = 2anf + 2(anr3 + 2r + r2)i 
E2 = 2angnm2 + 2gn(2r + r2)ra 

E 3 = ^ + (an + ( - l ) n ) ( 2 r + r 2 ) 2 + r3(2r + r 2 ) . 

Assuming q — e*%z;, from [5, p, 103] we have 

00 °° 2 firR 1 \ 

Therefore, two forms for 0r3r2(n><z) a r e possible, based on either of the two forms occurring 
in Poisson-Jacobi identity, that is, 

! _ V f l ( a " r 3 + 2r + r2 - 1 \ / 2r + r2 - 1 \ 
fg^z 2^ *\* 2an '2anzy/ 3 \ 2o„ ' 2 a n 3 r l z ; 

and 

" £ 0 3 M a „ r 3 + 2 r + r 2 ) | 2 a n z ) 6 > 3 ( w ^ 
r=0 
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For example, taking n = 0,1 mod 3 we get four fairly symmetric expressions for @ij(rbjq) 
in terms of Jacobi theta functions. With the restriction on n,an is odd, therefore — (2r + 
l)[(fln — l)/2] r u n s o v e r a M l remainder set along with r. Thus, using the properties 0±(£\z) — 
0s(f + | k ) and 03(£ + *\z) = 03(C\z) [12], we obtain 

2any/g^z *-? \ an 

r ,_1 V*-h _ 1 

a n - l 

2an2 an 2an$ 

6oi(n,g) - )=- Vs 04 (v—\—L} 64 (TT—I—— 
2an^/g^z ^ V a n 2an^y \ a n 2an#n 

eio(n,9) = "!_ E *4 (*—\i^-)e* f^- l^" 

en(n,«) - . ~* 5 03 U—\f^) ^ ^—1^- ) 

4. C O N C L U D I N G R E M A R K S 

We conclude with an example and a few remarks on open problems related to the con-
struction of n-dimensional lattices with maximum center density. 

Fibonacci ideal lattices have been used to design good signal constellations for sending 
information over communication channels [6]. The goal is to choose a constellation of M 
points in a space of dimension n with maximum normalized minimum squared distance K — 

d2 

- ^ log2 M, where E^ is the average squared norm of the points of the constellation, and 

^Lin IS ^ n e minimum squared distance between points of the constellation. For example, the 
ideal (2 — 5Ci2)Z[Ci2] may be used to construct a constellation of 37 points. A basis for A, the 
lattice generated by Z[£i2], is given by the rows of the following matrix: 

B = 

1 
^3 
2 
1 
2 
0 

0 
1 
2 

Vs 
2 
1 

1 
V3 

2 
1 
2 
0 

0 
1 
2 
Vs 

2 
1 
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whereas a basis for the Fibonacci ideal lattice A3 is obtained by left multiplying B by the 
matrix associated to the ideal (2 — 5Co) 

[ 2 - 5 0 0 ] 
0 2 - 5 0 
G O 2 - 5 

L5 0 - 5 2 J 

The center densities of A and A3 are 7 = 0.0833 and 73 = 0.1207 respectively. 
The rational prime 37 splits in Z[&2] as 37 = pip2psP4j where pi = ( - 1 + 2£12 + 2C2

2)3 
and the other primes p2,ps? and ^4 are obtained by conjugation, namely, substituting ("12 
with (f2, £j2J and CM respectively. Thus, the set of 37 elements modulo pi is Z[£12] is a field 
isomorphic to Z37 the set of remainders modulo 37. The following table 

\e 
0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

Xl 

0 

-1 

0 

-1 

0 

1 

0 

-1 

1 

0 

1 

0 

-1 

X2 

0 

-1 

0 

-1 

-1 

0 

-1 

-2 

1 

0 

1 

0 

0 

X3 

0 

1 

0 

1 

-1 

-2 

-1 

0 

0 

1 

0 

1 

0 

X4 

0 

1 

1 

2 

-1 

-1 

0 

1 

-1 

0 

0 

1 

0 

I 

1 

4 

7 

10 

13 

16 

19 

22 

25 

28 

31 

34 

Xi 

1 

0 

-1 

0 

-1 

1 

0 

-1 

0 

1 

0 

1 

%2 

0 

0 

-1 

0 

-1 

2 

1 

0 

1 

1 

0 

1 

X'S 

0 

-1 

0 

-1 

0 

0 

1 

2 

1 

-1 

0 

-1 

X4 

0 

-1 

0 

0 

-1 

-2 

-1 

-1 

£ 

2 

5 

8 

11 

14 

17 

20 

23 

26 

29 

32 

35 

Xi 

-2 

1 

0 

1 

0 

-1 

1 

0 

-1 

0 

-1 

2 

%2 

-1 

0 

-1 

0 

-1 

-1 

1 

1 

0 

1 

0 

1 

%3 

1 

-1 

0 

-1 

0 

-1 

1 

0 

1 

0 

1 

-1 

X'4 

1 

-1 

0 

0 

1 

0 

0 

-1 

0 

0 

1 

-1 

identitifies the constellations where a point with coordinates (xi,X2,x^,x^) in different bases, 
namely, Bt = {1, Ci2Ci2,Ci32} and B2 = {-1 + 2Ci2 + 2C2

2?-Ci2 + 2C?2 - 2d2
2 + 2C?2?-2 + 

C12 + 2Ci2? - 2 - 2Ci2 + 2(f2 + Ci2}5 receives the same label £ = x\ - 8x2 + (~8)2x2 - 83x3 = 
x\ + 29x2 + 27x2 + 6x3 mod 37. The maximum normalized minimum squared distances of 
constellations with 37 points in A and A3 are K — 3.21 and ^3 = 3.98 respectively. 

In dimension four, we have seen that an ideal lattice with maximum center density exists 
along with a class of ideal lattices achieving the same maximal density asymptotically. For a 
given m-dimensional space, it would be interesting to ascertain whether the maximum center 
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density Is achievable finitely or asymptotically. The theta series 0An (q) of a Fibonacci ideal 
lattice can be expressed by means of Jacobi theta functions. It is also of interest to know 
whether ©An (q) can be expressed in terms of a finite initial set of theta series 0 A O , - • •, ©As • 
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