AN ELEMENTARY PROOF OF JACOBI'S FOUR-SQUARE THEOREM

John A. Ewell

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115
(Submitted March 2001)

1. INTRODUCTION

Recall that $\mathbb{P}:=\{1,2,3, \ldots\}, \mathbb{N}:=\mathbb{P} \cup\{0\}$ and $\mathbb{Z}:=\{0 \pm 1, \pm 2, \ldots\}$. Then, for each $n \in \mathbb{N}$,

$$
r_{4}(n):=\left|\left\{\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \in \mathbb{Z}^{4} \mid n=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}\right\}\right| .
$$

For each $n \in \mathbb{P}, \sigma(n)$ denotes the sum of all positive divisors of $n, b(n)$ denotes the exponent of the largest power of 2 dividing n, and then $\operatorname{Od}(n):=n 2^{-b(n)}$. (Quite properly, $b(n)$ (or $2^{b(n)}$) is called the binary part of n and $\operatorname{Od}(n)$ is called the odd part of n.) In this note we give a simple proof of the following elegant result first stated and proved by Jacobi [1, p. 285].
Theorem 1: For each $n \in \mathbb{P}$,

$$
r_{4}(n)=8\left(2+(-1)^{n}\right) \sigma(\operatorname{Od}(n)) .
$$

(Of course, $r_{4}(0)=1$.)
Our proof depends on several immediate consequences of the celebrated Gauss-Jacobi triple-product identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)\left(1+t x^{2 n-1}\right)\left(1+t^{-1} x^{2 n-1}\right)=\sum_{-\infty}^{\infty} x^{n^{2}} t^{n} \tag{1}
\end{equation*}
$$

which is valid for each pair of complex numbers t, x such that $t \neq 0$ and $|x|<1$. For a proof see [2, pp. 282-283].

2. PROOF OF THEOREM 1

We begin with Jacobi's triangular-number identity [2, p. 285]

$$
\begin{equation*}
2 \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{3}=\sum_{-\infty}^{\infty}(-1)^{k}(2 k+1) x^{k(k+1) / 2} \tag{2}
\end{equation*}
$$

valid for each x such that $|x|<1$. In (2) we first let $x \rightarrow x^{8}$, and then multiply the resulting identity by x to get

$$
\begin{equation*}
2 x \prod_{1}^{\infty}\left(1-x^{8 n}\right)^{3}=\sum_{-\infty}^{\infty}(-1)^{k}(2 k+1) x^{(2 k+1)^{2}} \tag{3}
\end{equation*}
$$

AN ELEMENTARY PROOF OF JACOBI'S FOUR-SQUARE THEOREM

Next, we square both sides of (3), and appeal to the elementary identity

$$
u^{2}+v^{2}=\frac{1}{2}\left\{(u+v)^{2}+(u-v)^{2}\right\}
$$

to get

$$
\begin{aligned}
4 x^{2} \prod_{1}^{\infty}\left(1-x^{8 n}\right)^{6} & =\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty}(-1)^{j+k}(2 j+1)(2 k+1) x^{(2 j+1)^{2}+(2 k+1)^{2}} \\
& =\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty}(-1)^{j+k}(2 j+1)(2 k+1) x^{2\left[(j+k+1)^{2}+(j-k)^{2}\right]} .
\end{aligned}
$$

Now, with

$$
E:=\left\{(r, s) \in \mathbb{Z}^{2} \mid r \text { and } s \text { have the same parity }\right\}
$$

it follows easily that the function $F: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$, defined by

$$
F(j, k):=(j+k, j-k), \text { for each }(j, k) \in \mathbb{Z}^{2},
$$

is one-to-one from \mathbb{Z}^{2} onto E. Hence, in the foregoing identity let $r=j+k, s=j-k$, so that $j=(1 / 2)(r+s), k=(1 / 2)(r-s)$, and let $x \rightarrow x^{1 / 2}$ to get

$$
\begin{aligned}
4 x \prod_{1}^{\infty}\left(1-x^{4 n}\right)^{6}= & \sum_{(r, s) \in E}(-1)^{r}(r+1+s)(r+1-s) x^{(r+1)^{2}+s^{2}} \\
= & \sum_{(r, s) \in E}(-1)^{r}\left\{(r+1)^{2}-s^{2}\right\} x^{(r+1)^{2}+s^{2}} \\
= & \sum_{-\infty}^{\infty}(2 m+1)^{2} x^{(2 m+1)^{2}} \sum_{-\infty}^{\infty} x^{(2 n)^{2}}-\sum_{-\infty}^{\infty} x^{(2 m+1)^{2}} \sum_{-\infty}^{\infty}(2 n)^{2} x^{(2 n)^{2}} \\
& -\sum_{-\infty}^{\infty}(2 m+2)^{2} x^{(2 m+2)^{2}} \sum_{-\infty}^{\infty} x^{(2 n+1)^{2}}+\sum_{-\infty}^{\infty} x^{(2 m+2)^{2}} \sum_{-\infty}^{\infty}(2 n+1)^{2} x^{(2 n+1)^{2}} \\
= & 2\left\{\sum_{-\infty}^{\infty}(2 m+1)^{2} x^{(2 m+1)^{2}} \sum_{-\infty}^{\infty} x^{(2 n)^{2}}-\sum_{-\infty}^{\infty} x^{(2 m+1)^{2}} \sum_{-\infty}^{\infty}(2 n)^{2} x^{(2 n)^{2}}\right\},
\end{aligned}
$$

AN ELEMENTARY PROOF OF JACOBI'S FOUR-SQUARE THEOREM

since $m \in \mathbb{Z} \Longleftrightarrow m+1 \in \mathbb{Z}$. We cancel a factor of 2 and put

$$
f(x):=\sum_{-\infty}^{\infty} x^{(2 m+1)^{2}}, g(x):=\sum_{-\infty}^{\infty} x^{(2 n)^{2}}
$$

to get

$$
\begin{equation*}
2 x \prod_{1}^{\infty}\left(1-x^{4 n}\right)^{6}=g(x)^{2} \frac{\theta_{x} f(x) \cdot g(x)-f(x) \cdot \theta_{x} g(x)}{g(x)^{2}} \tag{4}
\end{equation*}
$$

where $\theta_{x}:=x D_{x}, D_{x}$ denoting differentiation with respect to x. But, with the help of (1), we get

$$
\begin{aligned}
& f(x)=2 x \prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+x^{8 n}\right)^{2} \\
& g(x)=\prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+x^{8 n-4}\right)^{2}
\end{aligned}
$$

so that

$$
\frac{f(x)}{g(x)}=2 x \prod_{1}^{\infty} \frac{\left(1+x^{8 n}\right)^{2}}{\left(1+x^{8 n-4}\right)^{2}}
$$

Hence,

$$
\theta_{x}\{f(x) / g(x)\}=\frac{f(x)}{g(x)}\left\{1+16 \sum_{k=1}^{\infty} \frac{k x^{8 k}}{1+x^{8 k}}-8 \sum_{k=1}^{\infty} \frac{(2 k-1) x^{8 k-4}}{1+x^{8 k-4}}\right\}
$$

Now,

$$
g(x)^{2} \frac{f(x)}{g(x)}=f(x) g(x)=2 x \prod_{1}^{\infty}\left(1-x^{8 n}\right)^{2}\left(1+x^{4 n}\right)^{2}
$$

With the help of Euler's identity [2, p. 277]

$$
\prod_{1}^{\infty}\left(1+x^{n}\right)\left(1-x^{2 n-1}\right)=1
$$

which is valid for each complex number x such that $|x|<1$, we substitute the foregoing evaluations into (4), cancel $2 x$, let $x \longrightarrow x^{1 / 4}$ and divide both sides of the resulting identity by $\Pi\left(1-x^{2 n}\right)^{2}\left(1+x^{n}\right)^{2}$ to get

$$
\begin{align*}
& \prod_{1}^{\infty} \frac{\left(1-x^{2 n}\right)^{6}\left(1-x^{2 n-1}\right)^{6}}{\left(1-x^{2 n}\right)^{2}\left(1+x^{n}\right)^{2}}=\prod_{1}^{\infty}\left(1-x^{2 n}\right)^{4}\left(1-x^{2 n-1}\right)^{8} \\
& \quad=1+16 \sum_{k=1}^{\infty} \frac{k x^{2 k}}{1+x^{2 k}}-8 \sum_{k=1}^{\infty} \frac{(2 k-1) x^{2 k-1}}{1+x^{2 k-1}} \tag{5}
\end{align*}
$$

We now digress momentarily to make a couple of key observations. First, we let $t=1$ in (1), and observe that the fourth power of the right-hand side of the resulting identity generates the sequence $r_{4}(n), n \in \mathbb{N}$. In other words,

$$
\prod_{1}^{\infty}\left(1-x^{2 n}\right)^{4}\left(1+x^{2 n-1}\right)^{8}=\left\{\sum_{-\infty}^{\infty} x^{n^{2}}\right\}^{4}=\sum_{n=0}^{\infty} r_{4}(n) x^{n}
$$

Next, we observe that the composite function $\sigma \circ O d$ arises quite naturally in the expansion:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{(2 k-1) x^{2 k-1}}{1-x^{2 k-1}} & =\sum_{k=1}^{\infty} \sum_{j=0}^{\infty}(2 k-1) x^{2 k-1} \cdot x^{j(2 k-1)} \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}(2 k-1) x^{j(2 k-1)} \\
& =\sum_{n=1}^{\infty} x^{n} \sum_{\substack{d|n \\
d| \text { odd }}} d \\
& =\sum_{n=1}^{\infty} \sigma(\operatorname{Od}(n)) x^{n}
\end{aligned}
$$

Returning to the proof of our theorem, we appeal to [2, p. 312], and in (5) let $x \rightarrow-x$ to get

$$
\begin{aligned}
\sum_{n=0}^{\infty} r_{4}(r) x^{n} & =\prod_{1}^{\infty}\left(1-x^{2 n}\right)^{4}\left(1+x^{2 n-1}\right)^{8} \\
& =1+16 \sum_{k=1}^{\infty} \frac{k x^{2 k}}{1+x^{2 k}}+8 \sum_{k=1}^{\infty} \frac{(2 k-1) x^{2 k-1}}{1-x^{2 k-1}} \\
& =1+16 \sum_{n=1}^{\infty} \frac{(2 n-1) x^{4 n-2}}{1-x^{4 n-2}}+8 \sum_{k=1}^{\infty} \frac{(2 k-1) x^{2 k-1}}{1-x^{2 k-1}} \\
& =1+16 \sum_{n=1}^{\infty} \sigma(\operatorname{Od}(n)) x^{2 n}+8 \sum_{n=1}^{\infty} \sigma(\operatorname{Od}(n)) x^{n} \\
& =1+16 \sum_{n=1}^{\infty} \sigma(\operatorname{Od}(2 n)) x^{2 n}+8 \sum_{n=1}^{\infty} \sigma(\operatorname{Od}(2 n)) x^{2 n}+8 \sum_{n=1}^{\infty} \sigma(2 n-1) x^{2 n-1} \\
& =1+24 \sum_{n=1}^{\infty} \sigma(\operatorname{Od}(2 n)) x^{2 n}+8 \sum_{n=1}^{\infty} \sigma(2 n-1) x^{2 n-1}
\end{aligned}
$$

Here, we've made use of the obvious facts: $\operatorname{Od}(2 n)=\operatorname{Od}(n)$ and $\operatorname{Od}(2 n-1)=2 n-1$, for each $n \in \mathbb{P}$. Finally, we equate coefficients of like powers of x to get

$$
r_{4}(0)=1
$$

and for each $n \in \mathbb{P}$,

$$
r_{4}(2 n)=24 \sigma(O d(2 n)), r_{4}(2 n-1)=8 \sigma(2 n-1)
$$

This completes the proof of theorem 1.

REFERENCES

[1] L.E. Dickson. History of the Theory of Numbers. Volume II. New York: Chelsea, 1952.
[2] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Clarendon Press, Oxford (1960), 4th ed.

AMS Classification Numbers: 11E25, 05A20

国

