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1. I N T R O D U C T I O N 

It is well-known (see5 [4] p. 411) that the general solution of the differential equation 
(x2 — l ) | / ; + xyf — n2y = 0 is of the form: 

V = CI(^V^EIY+CJ^V^T)\ (1) 

where C\ and C^ are arbitrary constants and n E N. 
For G\ = C2 = 1 from (1) we get that 

x + yx2 — 1 I / x — yx2 — 1 
Tn(x)= - ^ - + v- , (2) 

is the Chebyshev polynomial of the first kind. 
In [2] the author has considered a more general class of polynomials, namely: 

Wn(x\ c) = + , (3) 

where c is a parameter and where n > 1 is the degree of the polynomial Wn(x; c). Moreover, 
it has been proved in [2] that the function: 

y = Ci(*±y^)\Ca(*-yfTA\ (4) 

is the general solution of the differential equation: 

(x2 + c)y" + xy" - n2y = 0,x2 + c > 0, n E N. (*) 
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The polynomial Wn(x;c) given by (3) contains the well-known Pell polynomial when c = 1 
and the Fibonacci polynomial when c = 4. 

In this paper we give further extensions of this result. 

2* B A S I C L E M M A S 

L e m m a 1: Let s®, u E C2(J) be real-valued functions of x, where J = (xi,X2) C R and 
ti / 0 on J . The function y\ — SQUXJ with non-zero real constant A3 is the particular solution 
of the differential equation: 

Dop" + Dn/ + D2y = 0 (2.1) 

if and only if there exist the functions 81,82 £ C2(J) such that 

D0S2 + DlSl + D2sQ = 0. (2.2) 

Proof: Suppose that the function y\ = SQUX is the particular solution of (2.1). Then we 
have Doy" + Diy[+ D2yi = 0 and by the assumption on the functions SQ and u it follows that 

y[ = s'0ux-+ SQXU^U* = ux (s'0 + Xs0 — J . (2=3) 

Putting 

si = So + A$0 — (2.4) 
u 

in (2.3) we have y[ = 5iteA. In a similar manner we obtain 

y!( = (8luxy = 8[ux + A*it4A-V = B A (*; + A * i - ) .. (2.5) 

Putting 

82 = 8,
1 + \81- (2.6) 

u 

in (2.5) we have y" = §2^A? and therefore we obtain J^ol/i+-^i!/i + ^22/i = DQS2UX + DiS\ux + 
D2S0?|A = WA(D052 + #1*1 + -D250) = 0. 
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Since w ̂  0 on J then (2.2) follows from the last equality. Now, we suppose that (2.2) is 
satisfied by some functions so>si>S2 £ G2(J). Then we have 

D0s2ux + DlSlux + D2s0ux = 0. (2.7) 

Putting 2/1 = SQUX in (2.7) we obtain y[ = siux and y" = s2ux, where the functions s\ and 
s2 are defined by the formulas (2.4) and (2.6), respectively Hence, Doy'{ + Diy[ + D2yi = 0, 
and the proof of Lemma 1 is complete. D 

L e m m a 2: Let so,toyu,v e C2(J) be real-valued functions of x and let u ^ 0, ? ; ^ 0 o n J . 
Then the functions 

2/i = s0ux and 1/2 = t0vx (2.8) 

are particular solutions of the differential equation: 

D0y" + Diy
f + D2y = 0, (2.9) 

if and only if the functions s i , £i, s2, and £2 are given by the formulas: 

# 1 * f t / . t * . c / x 

§! = sn + Aso — ,*i = *o + At0 —,«2 = *i + Asi —, t2 = t\ + \tx—, (2.10) 
U V U V 

and 

* - < * ( * * ) , * . = * ( « : ) , * = « * ( ; : : : ) • p-«> 

Proof: From Lemma 1 it follows that the functions t/i = Soux and y2 = IQVX are particular 
solutions of the equation (2.9) if and only if 

D0s2 + Di*i + D2s0 = 0 and D0t2 + Dth + Z>2*o = 0, (2.12) 

where the functions si,s2,ti, and t2 are defined by the formulas in (2.10). Now, we consider 
the determinant: 

( so *i $2 
so st s2 I . (2.13) 

to t\ t2 

It is easy to see that W\ = 0, and by Laplace's theorem we obtain 

s„det(»; H)+,^(Z £ ) + « « ( ; ;2)=0. (2.4, 
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Denoting D0 = det ( J ° J1 J , Dt - det f j 2 J° J , Z>2 = det ( J1 J2 J, in (2.14) we obtain 

DQ^2 + Disi + D2S0 = 0. In a similar manner we consider the determinant: 

to ti £2 
W 2 = det j t 0 *i «2 I • (2-15) 

1 5 0 * i 5 2 

As in the previous case we obtain that Dfa + Diti + D2to = 0 and the proof of Lemma 2 is 
complete. D 

Prom Lemma 1 and Lemma 2 we deduce the following lemma: 

L e m m a 3: Let A be a non-zero real constant and let u, v £ C2(J) be a non-zero real-valued 
functions, linearly independent over R, where J = (a; 1,0:2) C R. Then the general solution of 
the differential equation: 

det ( J t ) » " + d e t ( £ j ) y ' + A d e t ( | j [ ) v = 0, (**) 

where g = *£ - (1 - A) ( £ ) and ft = * £ - (1 - A) ( £ ) is of the form 

y = dux + C2vx, (2.16) 

where Ci and C-z are arbitrary constants. 

Proof: Putting so = to = 1 in Lemma 1 and Lemma 2, we obtain si = A^-,ti = A^- and 

'1 + A S l ^ = A ( ^ - ( l - A ) ( ^ ) 2 ) = A 5 , f 2 = t'1 + A<1^ = A ( f - ( l - A ) ( ^ ) 2 ) = 52 = 5 

Aft. Hence, we have 

D ° = d e t ( i A£) = A d e t ( i ^ ) ( 2 1 7 ) 

*=* . (* l)-d-(JS !)=**(? I) <»•"> 
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°-«{u S)="*(A| Z)-*<*{i 0- (2-19> 
Prom (2.17)-(2.19) it follows that equation (2 J ) reduces to (**), hence by Lemma 2 it follows 
that the functions y\ = ux, and y2 = vx are particular solutions of (**). It suffices to prove that 
the functions y\ and y2 are linearly independent over JR. To this end consider the Wronskian 
of these functions 

/ lit i) \ 

By the assumptions that u ^ 0, v ^ 0 it follows that det I , ; ^ 0 on J and 

consequently from (2.20) we see that W (2/1,2/2) ^ 0 on J . Therefore the function 

y = C11/1 + C2»2 = ClU
x + C72?/A 

is the general solution of the differential" equation (**). The proof of Lemma 3 is complete. • 

3. T H E R E S U L T S 

In this part of our paper we obtain some new classes of second order differential equations 
which are effectively integrable and with general solutions given in explicit form (Cf. [4]). 
Namely, we prove of the following theorem. 

T h e o r e m 1: Let the functions a, 5 E C2(J), J = ( x i , ^ ) C R be real™valued and non-zero in 
x such that ax =fi ±bx on J , and let a3 b be linearly independent over R. Then the function 

y = d(a(x) + b(x))n + C2(a(x) - b(x))n (3.1) 

where C\ and C2 are arbitrary constants and n E N is a general solution of the differential 
equation: 

P0{x)y" + Pt(x)y' + nP2{x)y = 0, (***) 

where 
P0(x) = (a(x)2 - b(x)2)(a'(x)b(x) - b'(x)a(x)) = F(x)G(x) (3.2) 

Pi(x) = (a"(x)b(x) - b"(x)a{x))F{x) + 2(n - l)G(x)(a'(x)a(x) - b'(x)b(x)) (3.3) 

P2(x) = (b"(x)a'(x) - a"{x)h!(x))F{x) - (n - 1) {{a'{x)f - (6'(a:))2) G{x) (3.4) 
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Proof: Let u = a(x) — b(x), v = a(x) + b(x) and let y\ — wn and f/2 = vn , where n e N. 
Then by Lemma 3 it follows that 

d e t ^ ^ = 2K(x)tw-y-M„W) +4(n_ l ) = ^)aM-j.-M^)G(x) (36) 

d e t ( | g j = W w v ( , ) > ( , ) ) . < i . 1 ) j W , y ) n ^ (37) 

Substituting (3.5)-(3.7) in (**) of Lemma 3 we obtain^ after some calculation that (**) 
reduces to the equation Po(x)yfi + Pi(x)yf + P2(x)y = 0 with the functional coefficients 
Po(x),Pi(x), and P2(x) as given by the formulas (3*2)-(3»4)B It remains to prove that the 
functions u = a(x) — &(rr) and v = a(x) + b(x) are linearly independent over R under the 
assumption that the functions a(x) and b(x) are linearly independent over R. To this end we 
consider the Wronskian 

w / \ A 4. ( u v \ A ± ( a(x) ~~ Kx) a(x) + Kx) \ W(u,v) = det I , , J = det 1 ,) { , , \ \ ,} ( . l 7 \ \ . 
v / \u v J \a (x) — b (x) a(x) + o(x)J 

From the well-known properties of determinants it follows that 

^ ) , ) = 2 d e t ( ^ ) *<*>) . (3.8) 

Prom (3.8) and by the assumptions of the theorem about the functions a and b it folllows that 
W(u, v) T£ 0 on J and the proof of Theorem 1 is complete* D 

Using Theorem 1 we obtain the following: 

T h e o r e m 2: The general solution of the differential equation 

F0(x)y,f + F!(x)i/ + F2(x)y - 0 . (I) 
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with coefficients F0{x),Fi(x), and F2(x) given by the formulas 

F0(x) = 2(bx + c)(bx + 2c) (x2 + bx + c) (II) 

jFi(aO = Ax(bx + c) + 2(n - l)5(fe + 2c) (^2 + bx + c) 

F2(x) = ~(2A(bx + c) + A(n - l)(fta?"+ 2c)) 

where A = b2 — 4c is the discriminant of the polynomial f(x) = x2 + bx + c and 6a; + c ^ 0 
and te + 2c ^ 0 on J = (#1, #2) C i? is of the form 

faj + V ^ T k T c l , ~ Ix-y/x2 + bx + c\ /TTTN 
» = Cl\ o + C 2 = , (HI) 

where G\ and C2 are. arbitrary constants and n E N. 
Proof: Let a(x) = § and b(x) = \\/x2 + bx + c. Then we have a'(x) = | and 

5 ' ^ ) =
 2 x + 6 , so a/;(^) - 0 and b"(x) = 

Ay/x2 + bx + c 8(x2 + &E + c)^/x2 -\-bx-\- c 

Using formulas (3.2)-(3.4) from Theorem 1 we obtain 

P1(a;) = 

32Vx2 + 6a; + c ' 

A:c(6a: + c) + 2(n - l)b(fcc + 2c)(x2 + bx + c) 

P2(*) = 

64(x2 + 6x + c)s/x2 -\-bx-\- c 

2A(bx + c) + A(n - l)(6x + 2c) 
128(x2 + bx + c ) v ^ T ¥ T c 

From the last formulas it is easy to see that the equation reduces to the equation (I) with 
the coefficients given by (II). Therefore, it remains to prove that the functions a(x) = § and 
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b(x) = \\/x2 + bx + c are linearly independent over R, if bx-\-2c ^ 0 on J . Let W(a, 5) denotes 
the Wronskian of the functions a and 6. Then we have 

WYa,6) = det ,\ { ,/> < = det ( i 2 2^+5 = —• , = • 

Prom the last equality it follows that W(a, b) ^ 0 on J , because 6x + 2c ^ 0 on J . 

The proof of Theorem 2 is complete. • 
Now, we observe that the result described in Introduction follows immediately from The-

orem 2 in the particular case where 6 = 0. 

4 . F U N C T I O N A L R E C U R R E N C E S A N D G E N E R A L I Z E D 
H O R A D A M - M A H O N F O R M U L A F O R P E L L P O L Y N O M I A L S 

In [3], Horadam and Mahon consider a matrix method in the investigation of some classes 
of polynomials such as the Pell polynomials Pn(x). They proved that for every natural number 
n, we have 

Pn.1(x)Pn+1(x) - Pfe) = ( -1 ) " , (4.1) 

where Pn(x) is defined by the recurrence formula: 

Po(x) = 0, Pi(x) = 1, Pn+2(x) - 2xPn+1(x) + Pn(x)> (4.2) 

In [1], the authors have considered the functional matrix 

*-"«-(£} $)• 
Let TTA(X) ^ 0 or det-A(x) ^ 0 on J = ( x i , ^ ) C JR and let 

r = r(ar) = TrA(x) = a(x) + d(a?),*- = s(x) = -det-A(ar), (4.3) 

and 
uQ = u0(x) = r, t*i = wi(x) = riio(a?) + s. (4.4) 

Let 
%(x ) = run-i(x) + 5Bfl_2(^)j for n > 2, (4.5) 
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be a functional recurrence sequence associated with the matrix A = A(x). Then for every 
natural number n > 2, we have, in [1], 

AnrT\ = f*(z) h(x)\n
 = fa(x)un^2(x) + vn-2(x) b(x)un-2(x) \ (4 §) 

\c(x) d(x)) \ c(x)un^2(x) d(x)un^2(x) + vn^2(x) J ' { ' } 

where 
vn-2(x) = suns(x) for n > 3 and u-i{x) — 1 for n = 2= (4.7) 

Prom (4.6) and (4.7) it follows that the formula (4.8) holds for the recurrence sequence 
un(x) defined by (4.4) and (4.5): 

*n- i (*) - t4„(x)tiTO-2(aO = (detA(x))n (4.8) 

for every natural number n > 2. Now, we deduce from (4.8) the Horadam-Mahon formula for 
Pell polynomials. Indeed, let a(x) = d(x) = x and b(x) = c(x) = V^ 2 + 1. Then the matrix 
A(x) — P(x) has the form 

and the recurrence sequence Pn(x) associated with the matrix P(x) satisfies the following 
conditions: 

r = TrP(x) = 2x, s=-detP(x) = 1, (4.10) 

and 
Pn(x) = rPn-!(x) + sPn-2(x) = 2xPn__1(^) + Pn-2(x). (4.11) 

Here, Pn(a;) denotes the Pell polynomial. Replacing un(x) by Pn{x) in the formula (4.8) we 
obtain the Horadam-Mahon formula for Pell polynomials. 

In the same way we produce more general formulas connected with classes of polynomials 
Wn(x;hjc) considered in Theorem 2. Namely, we have the following: 

P ropos i t i on 1: Let W(x; 6, c) = I t 2 , I be a 2 x 2 functional matrix 
\ v x ~f~ ox I- c x j 

and let Wi^ar; 6, c) be the functional recurrence sequence associated with the matrix W(x; 6, c) 
defined by the formulas: 

r = TrW(x\ b, c) = 2x, s = - det W{x\ 6, c) 

= -~(x2 - (x2 + fear + c)) = fe + c 
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and 
Wo(x\b,c) = r = 2xj Wi(x]b,c) = rWo(x]b,c) + s = 4x2 + 6x + c 

and for n > 2 

Wn(x;b,c) — rWn„i(x;6?c) + §Wn_.2(x;ftJc) = 2xWn»-i(x;6?c) + (6a: + c)Wn_2(x;65c). 

Then for every natural number n > 2 we have 

W f t - i f o M - W ^ ^ M ^ n ^ M - (debW(x\b9c))n = ( - l ) n ( t e + c)n . 

Proof: In the first step, by inductive manner as in [1], (pages 116-117), we obtain an 
analog of formula (4.6) for the powers of the matrix W(x-,b,c), using the recurrence sequence 
Wn(x;b,c). The final step relies on applying Cauchy's theorem on product of determinants. D 

In a similar way as in [1], (pages 118-119) we obtain the following: 

P r o p o s i t i o n 2: Let k be a non-zero constant and let a = a(x) and b = b(x) be given functions 
of the variable x. Then for every natural number n we have 

a(x) b(x)\n _ ( Rn(x) Sn(x)\ 
kb(x) a(x)J \kSn(x) Rn(x)J> 

where 
Rn(x) = \ ( («(*) + h{x)Vk)n + (a(x) - 6(x)Vfe)n) 

and 
Sn(x) = -^j= ((a(x) + b{x)Vk)n - (a(x) - 6 ( x ) ^ ) n ) . • 

Putting k = 1 in the last equalities we obtain an explicit connection between the functions 
u(x) = a(x)—b(x) and v(x) = a(x)+6(x) considered in Theorem 2 with powers of the functional 
matrices and the corresponding functional recurrences. 
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