A THREE-VARIABLE IDENTITY INVOLVING CUBES OF FIBONACCI NUMBERS

R. S. Melham
Department of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia
(Submitted February 2001-Final Revision January 2002)

1. INTRODUCTION

The identities

$$
\begin{equation*}
F_{n+1}^{2}+F_{n}^{2}=F_{2 n+1} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n+1}^{3}+F_{n}^{3}-F_{n-1}^{3}=F_{3 n} \tag{1.2}
\end{equation*}
$$

are special cases of identity (5) of Torretto and Fuchs [7]. Interestingly, (1.2) is the only identity involving cubes of Fibonacci numbers that appears in Dickson's History of the Theory of Numbers [1, p. 395], and Dickson attributes it to Lucas.

In [6], the following generalizations of (1.1) and (1.2), together with their Lucas counterparts, were given.

$$
\begin{gather*}
F_{n+k+1}^{2}+F_{n-k}^{2}=F_{2 k+1} F_{2 n+1} ; \tag{1.3}\\
F_{3 k+1} F_{n+k+1}^{3}+F_{3 k+2} F_{n+k}^{3}-F_{n-2 k-1}^{3}=F_{3 k+1} F_{3 k+2} F_{3 n} \tag{1.4}
\end{gather*}
$$

In fact, as was proved by Howard [5], (1.3) is equivalent to

$$
\begin{equation*}
F_{n}^{2}+(-1)^{n+k+1} F_{k}^{2}=F_{n-k} F_{n+k}, \tag{1.5}
\end{equation*}
$$

occurring as I_{19} on page 59 in [4]. In (1.5), replacing n by $n+k$, and k by n yields

$$
\begin{equation*}
F_{n+k}^{2}+(-1)^{k+1} F_{n}^{2}=F_{k} F_{2 n+k} \tag{1.6}
\end{equation*}
$$

equivalent to (1.5), and which we require in the sequel.
Recently, we were made aware of the identity

$$
\begin{equation*}
F_{n+2}^{3}-3 F_{n}^{3}+F_{n-2}^{3}=3 F_{3 n} \tag{1.7}
\end{equation*}
$$

due to Ginsburg [3], and this prompted us to search for a more general identity that yields (1.2), (1.4), and (1.7) as special cases. This identity is stated in the next section, and our proof of it relies on a powerful method given recently by Dresel [2]. For instance, in the terminology of Dresel, (1.1) is homogeneous of degree 2 in the variable n. As such, to prove it we need only verify its validity for 3 distinct values of n.

A THREE-VARIABLE IDENTITY INVOLVING CUBES OF FIBONACCI NUMBERS

Quite often, after discovering a new Fibonacci identity, we expend energy trying to discover its Lucas counterpart. Dresel's duality theorem provides us with a way of achieving this quickly. Indeed, the duality theorem produces a dual identity for any homogeneous Fibonacci-Lucas (FL) identity.
The Duality Theorem (Dresel): Given a homogeneous FL-identity in the variable n, we can arrive at a new dual identity with respect to the variable n by making the following changes throughout:
(i) when j is odd, $F_{j n+k}$ is replaced by $L_{j n+k} / \sqrt{5}$,
(ii) when j is odd, $L_{j n+k}$ is replaced by $\sqrt{5} F_{j n+k}$,
(iii) when j is odd, $(-1)^{j n}$ is replaced by $-(-1)^{j n}$.

The justification for each step in the theorem is easily seen if we refer to the Binet forms. For example, the dual of (1.1) is $L_{n+1}^{2}+L_{n}^{2}=5 F_{2 n+1}$. We give further illustrations after the proof of our main result, when we employ the duality theorem to produce seven additional identities.

2. THE MAIN RESULT

We make use of the following identities.

$$
\begin{gather*}
F_{-n}=(-1)^{n+1} F_{n} \tag{2.1}\\
F_{n+k}+F_{n-k}=L_{n} F_{k}, \quad k \text { odd } \tag{2.2}\\
F_{n+k}-F_{n-k}=L_{n} F_{k}, \quad k \text { even } \tag{2.3}\\
F_{2 n}=F_{n} L_{n}, \tag{2.4}\\
(-1)^{k+1} F_{k} F_{n+k}^{3}-F_{k} F_{n-k}^{3}+F_{2 k} F_{n}^{3}=(-1)^{k+1} F_{k}^{2} F_{2 k} F_{3 n} \tag{2.5}
\end{gather*}
$$

Identities (2.1) and (2.4) are well known, while identities (2.2) and (2.3) occur as I_{22} and I_{24}, respectively, on page 59 in [4]. Identity (2.5), which appears as (5.2) in [2], can be expressed more simply if we factor out F_{k}. However, in its present form, its relationship with our main result is more transparent. Our main result follows.

Theorem: Let k, m, and n be any integers. Then

$$
\begin{equation*}
F_{m} F_{n+k}^{3}+(-1)^{k+m+1} F_{k} F_{n+m}^{3}+(-1)^{k+m} F_{k-m} F_{n}^{3}=F_{k-m} F_{k} F_{m} F_{3 n+k+m} \tag{2.6}
\end{equation*}
$$

Proof: Since (2.6) is homogeneous of degree 3 in the variable n, we need only verify its validity for four distinct values of n. If $k=m$, or if one of k or m is zero, then (2.6) follows immediately. Furthermore, if $k+m=0$, then (2.6) follows from (2.5). So we may assume that $k m(k-m)(k+m) \neq 0$. But then $0,-k,-m$, and $-k-m$ are distinct, and so we need
only verify (2.6) for these four values of n. We perform the verifications for $n=-k$ and $n=-k-m$, and leave the remaining verifications to the reader.

Using (2.1), we find that $F_{-k+m}^{3}=(-1)^{k-m+1} F_{k-m}^{3}$, and $F_{-k}^{3}=(-1)^{k+1} F_{k}^{3}$. Then, for $n=-k$,

$$
\begin{aligned}
L H S & =(-1)^{k+m+1} F_{k} F_{-k+m}^{3}+(-1)^{k+m} F_{k-m} F_{-k}^{3} \\
& =F_{k} F_{k-m}^{3}+(-1)^{m+1} F_{k-m} F_{k}^{3} \\
& =F_{k-m} F_{k}\left[F_{k-m}^{2}+(-1)^{m+1} F_{k}^{2}\right] \\
& =F_{k-m} F_{k}\left[F_{k-m}^{2}+(-1)^{-m+1} F_{k}^{2}\right] \\
& =F_{k-m} F_{k} F_{-m} F_{2 k-m} \quad \text { (using (1.6)) } \\
& =F_{k-m} F_{k} F_{-m} F_{-(-2 k+m)} \\
& =F_{k-m} F_{k}(-1)^{m+1} F_{m}(-1)^{-2 k+m+1} F_{-2 k+m} \quad \text { (using (2.1)) } \\
& =F_{k-m} F_{k} F_{m} F_{-2 k+m} \\
& =R H S .
\end{aligned}
$$

For $n=-k-m$ we have

$$
\begin{aligned}
L H S & =F_{m} F_{-m}^{3}+(-1)^{k+m+1} F_{k} F_{-k}^{3}+(-1)^{k+m} F_{k-m} F_{-k-m}^{3} \\
& =(-1)^{m+1} F_{m}^{4}+(-1)^{m} F_{k}^{4}-F_{k-m} F_{k+m}^{3} \quad \text { (using (2.1)) } \\
& =(-1)^{m}\left[F_{k}^{4}-F_{m}^{4}\right]-F_{k-m} F_{k+m}^{3} \\
& =(-1)^{m}\left[F_{k}^{2}+(-1)^{k+m+1} F_{m}^{2}\right]\left[F_{k}^{2}+(-1)^{k+m} F_{m}^{2}\right]-F_{k-m} F_{k+m}^{3} \\
& =(-1)^{m}\left[F_{m+(k-m)}^{2}+(-1)^{k-m+1} F_{m}^{2}\right]\left[F_{k}^{2}+(-1)^{k+m} F_{m}^{2}\right]-F_{k-m} F_{k+m}^{3} \\
& =(-1)^{m} F_{k-m} F_{k+m}\left[F_{k}^{2}+(-1)^{k+m} F_{m}^{2}\right]-F_{k-m} F_{k+m}^{3} \quad \text { (using (1.6)) } \\
& =F_{k-m} F_{k+m}\left[(-1)^{m} F_{k}^{2}-\left[F_{m+k}^{2}+(-1)^{k+1} F_{m}^{2}\right]\right] \\
& =F_{k-m} F_{k+m}\left[(-1)^{m} F_{k}^{2}-F_{k} F_{2 m+k}\right] \quad \text { (using (1.6)) } \\
& =-F_{k-m} F_{k+m} F_{k}\left[F_{(m+k)+m}+(-1)^{m+1} F_{(m+k)-m}\right] \\
& =-F_{k-m} F_{k+m} F_{k} L_{k+m} F_{m} \quad \text { (using (2.2) and (2.3))} \\
& =-F_{k-m} F_{k} F_{m} F_{2 k+2 m} \quad \text { (using (2.4)) } \\
& =R H S, \text { using }(2.1) .
\end{aligned}
$$

This completes the proof of the Theorem.

A THREE-VARIABLE IDENTITY INVOLVING CUBES OF FIBONACCI NUMBERS

Now, since (2.6) is homogeneous of degree 3 in the variable n, its dual identity, with respect to n is

$$
\begin{equation*}
F_{m} L_{n+k}^{3}+(-1)^{k+m+1} F_{k} L_{n+m}^{3}+(-1)^{k+m} F_{k-m} L_{n}^{3}=5 F_{k-m} F_{k} F_{m} L_{3 n+k+m} \tag{2.7}
\end{equation*}
$$

Before proceeding we note that, since $(-1)^{k}=(\alpha \beta)^{k},(-1)^{k} F_{k}$ has degree 3 with respect to the variable k. Hence (2.6) and (2.7) are each homogeneous of degree 3 in k, and their duals with respect to k are, respectively,

$$
\begin{equation*}
F_{m} L_{n+k}^{3}+5(-1)^{k+m} L_{k} F_{n+m}^{3}+5(-1)^{k+m+1} L_{k-m} F_{n}^{3}=L_{k-m} L_{k} F_{m} L_{3 n+k+m} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
25 F_{m} F_{n+k}^{3}+(-1)^{k+m} L_{k} L_{n+m}^{3}+(-1)^{k+m+1} L_{k-m} L_{n}^{3}=5 L_{k-m} L_{k} F_{m} F_{3 n+k+m} \tag{2.9}
\end{equation*}
$$

Finally, since $F_{m}=(-1)^{2 m} F_{m}, F_{k-m}=(-1)^{m-k+1} F_{m-k}$, and $L_{k-m}=(-1)^{m-k} L_{m-k}$, we see that (2.6)-(2.9) are each homogeneous of degree 5 in m. Accordingly, we find that their duals in the variable m are, respectively,

$$
\begin{gather*}
5 L_{m} F_{n+k}^{3}+(-1)^{k+m} F_{k} L_{n+m}^{3}+5(-1)^{k+m+1} L_{k-m} F_{n}^{3}=L_{k-m} F_{k} L_{m} L_{3 n+k+m} \tag{2.10}\\
L_{m} L_{n+k}^{3}+25(-1)^{k+m} F_{k} F_{n+m}^{3}+(-1)^{k+m+1} L_{k-m} L_{n}^{3}=5 L_{k-m} F_{k} L_{m} F_{3 n+k+m} \tag{2.11}\\
L_{m} L_{n+k}^{3}+(-1)^{k+m+1} L_{k} L_{n+m}^{3}+25(-1)^{k+m} F_{k-m} F_{n}^{3}=5 F_{k-m} L_{k} L_{m} F_{3 n+k+m} \tag{2.12}\\
25 L_{m} F_{n+k}^{3}+25(-1)^{k+m+1} L_{k} F_{n+m}^{3}+5(-1)^{k+m} F_{k-m} L_{n}^{3}=5 F_{k-m} L_{k} L_{m} L_{3 n+k+m} \tag{2.13}
\end{gather*}
$$

ACIKNOWLEDGMENT

We gratefully acknowledge that the suggestions of an anonymous referee have served to considerably streamline this paper.

REFERENCES

[1] L.E. Dickson. History of the Theory of Numbers. Volume 1. New York: Chelsea, 1966.
[2] L.A.G. Dresel. "Transformations of Fibonacci-Lucas Identities." Applications of Fibonacci Numbers. Volume 5 (1993): 169-84. Ed. G.E. Bergum et. al. Dordrecht: Kluwer.
[3] J. Ginsburg. "A Relationship Between Cubes of Fibonacci Numbers." Scripta Mathematica December (1953): 242.
[4] V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. The Fibonacci Association, 1979.
[5] F.T. Howard. "The Sum of the Squares of Two Generalized Fibonacci Numbers." Accepted for The Fibonacci Quarterly 41.1 (2003): 80-84.
[6] R.S. Melham. "Families of Identities Involving Sums of Powers of the Fibonacci and Lucas Numbers." The Fibonacci Quarterly 37. 4 (1999): 315-319.
[7] R.F. Torretto \& J.A. Fuchs. "Generalized Binomial Coefficients." The Fibonacci Quarterly 2.4. (1964): 296-302.

AMS Classification Numbers: 11B39

国㬐

