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P R O B L E M S P R O P O S E D I N T H I S I S S U E 

H-599 P r o p o s e d by t h e Ed i to r 

For every n > 0 let Cn := 1 ] be the nth Catalan number. Show that all the 
n + 1 V n J 

solutions of the diophantine equation Fm — Cn have m < 5. 

H-60Q P r o p o s e d by A r a l a p p a h Eswara thasan , Hofs t ra Univers i ty , H e m p s t e a d , 
N Y 

The Pseudo-Fibonacci numbers un are defined by U\ — 1, U2 = 4 and wn+2 = u-n+i +^n-
A number of the form 3s2, where s is an integer, is called a one-third square. Show that uo = 3 
and u-4 — 12 are the only one-third squares in the sequence. 

H-601 P r o p o s e d by W a l t h e r J a n o u s , Ur su l inengymnas ium, Innsb ruck , A u s t r i a 
Prove or disprove that the sequence 

I a(n+3)/2 | n > 1 

strictly decreases to its limit 1. Here, a is the golden section. 

H-602 P r o p o s e d by Ovid iu Purdu i , W e s t e r n Michigan Universi ty , Ka lamazoo , M I 
Find the limit 

lim V" I, 
n^°° rHtg-) 

where k and I are fixed positive integers, T is the Euler function, and a is the golden section. 
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S O L U T I O N S 

Sums of consecutive F ibonacc i n u m b e r s 

H-588 P r o p o s e d by Jose Luis Diaz -Bar re ro & J u a n Jose Egozcue, Barcelona , 
Spa in 

Let n be a positive integer. Prove that 

.n+1 n I T n _ p n 
I -s—r i -^u 11 J- u i i 

Solut ion by H. -J . SeifFert, Berlin^ G e r m a n y 
Direct computation shows that equality holds with n = 1. Now, suppose that n > 2. If a 

and b are real numbers such that b > a > 0, then, by Holder's Inequality, 

f\idt<(j\*y(i h \ n ( pb \ n 

dt] 

or, equivalently, 

n o n —a n fa-tuXn 
n + 1 

a ri /a -$- b\n 
~a ~ V 2 / 

Applying this inequality with a := F&+1 and b := Lfc+i, noting that F&+i + î jfc+i = 2F&+2, 
and taking the product over k = 1 , . . . , n, gives 

n-|-l n-{-l 
n TT J ^fc+l rfc+l n " • ' , : h n ^ 

By the Arithmetic-Geometric Mean Inequality, we have 

( n \ n n 

k=i J fc=i 

and the desired inequality follows. 
Also solved by P a u l Bruckman^ W a l t h e r J a n o u s a n d t h e p ropose r s . 
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I t e r a t e d Fibonacci n u m b e r s 

H-589 P r o p o s e d by R o b e r t DiSar io , Bryan t College, Smithfield, R I 
Let f(n) ~ F(F(n)), where F(ri) is the n t h Fibonacci number. Show that 

/ ( n ) = 7(^3) 

for n > 3. 
Solut ion by L.A.G. Dresel , Read ing , Eng land 

We shall first prove the identity Fs+tFs^t = (Fs)2 - ( - l ) 5 - t ( F t ) 2 , which corresponds to 
formula I (19) on page 59 of [1]. Using a/3 = — 1 and the Binet form for Fn, we have 

5 F s + t F s _ t = (as+t - /3*+t)(a*-* - p8'*) = a2s + /32 s - {af3)s-\a2t + /32t) 

= a2s - 2(a/3)s + /32s - {a^ia21 - 2(a/3)t + /32t} = 5{(FS)2 - ( - l )* -* (F t ) 2 } . 

Putting 5 := F n _ i and £ := Fn_2, we have 5 + 1 — Fn and s — t = F n _3 , so that our identity 
takes the form f(n)f(n-3) = (f(n-l))2-(-l)F(n~V(f(n-2))2. But since F n - 2 F n _ 2 + F n _ 3 
we have (—l)F(n~3) = (—l)F^n"1\ and for n > 3 we can divide by / ( n — 3), which proves the 
given formula. 
1. V.E. Hoggatt. "Fibonacci and Lucas numbers." Boston: Houghton Mifflin, 1969; rpt. 
Santa Clara, CA: The Fibonacci Association, 1979. 
Also solved by P. B r u c k m a n , M. Ca ta lan i , O. Pu rdu i , W . J a n o u s , H. Kwong , V, 
M a t h e , H. -J . Seiffert, J . Spilker a n d t h e p roposer . 

A r i t h m e t i c Funct ions of F ibonacci N u m b e r s 

H-590 P r o p o s e d by F lor ian Luca, I M A T E , U N A M , Morel ia , Mexico 
For any positive integer k let (/>(k), cr(k), r(k), 0(&), u(k) be the Euler function of &, the 

sum of divisors function of k, the number of divisors function of fc, and the number of prime 
divisors function of A; (where the primes are counted with or without multiplicity), respectively 

1. Show that n\(j){Fn) holds for infinitely many n. 
2. Show that n\a(Fn) holds for infinitely many n. 
3. Show that n\r(Fn) holds for infinitely many n. 
4. Show that for no n > 1 can n divide either oj(Fn) or Q(Fn). 

Solut ion by J . -Ch . Schlage-Puchta & J . Spilker, Alber t -Ludwigs -Univers i t a t 
Fre iburg , G e r m a n y 

We first prove a 
L e m m a : Let / : N —>• Z be multiplicative such that f(pk) is even for all primes p > 2 and 
all odd positive integers k. Then 2n\f(F2n) holds for every n > 6. 
Examples : 

1. The Euler function <f> is multiplicative and <j)(pk) = pk~l{p — 1) is even if p > 2. This 
is part 1 of the Problem. 

382 [AUG. 



ADVANCED PROBLEMS AND SOLUTIONS 

2. The sum of j t h powers of divisors function <Tj(n) = J2d\ndJ' 3 ^ ° i s multiplicative 

and (Tj(pk) = 1 -hpj + hp(fc~1)j' is even if both p and k are odd. The cases j = 1 and j = 0 
are parts 2 and 3 of the Problem, respectively. 
P roof of t h e L e m m a : Define the multiplicative function 

if p > 2 . 

Then f*(2kn) = /*(n) and /* (n) | / (n ) hold for all positive integers k and n. It suffices to show 
that 

(1) 64|/*(F6 4); 
(2) if n > 6 and n\f*(Fn), then 2n | /*(F2 n) . 
Claim (1) above follows from the fact that F6 4 is odd, squarefree, and has precisely 6 prime 

factors. For Claim (2) above, we use the facts that F2n = FnLn and L\ — 5F^ = ( - l ) n • 4. 
Prom the last formula, it follows that gcd(Fn,Ln)\2. Thus, writing 2 a | |F n and 26| |Ln, we get 

r(F2n) = r(FnLn) = r (§• • £) = /•(fr)r(ilr) = /*(*•»)/•(£.)• 

By the hypotheses of the Lemma, f*(Ln) is always even except when Ln is a square or twice 
times a square. A result from [1] says that the only such values of n are n = 1, 3, 6. Thus, if 
n > 6, then f*(Ln) is even, which completes the proof (2) and of the Lemma. 

For part 4 of the Problem, assume that n > 2. Then Fn > 1, and so on the one hand 
writing the prime factorization of Fn we get 

3 3 

while on the other hand, by the Binet formula, we have 

where a is the golden section and /3 is its conjugate. Thus, n > Ylj % = ^(-^n) > ou(Fn), 
which shows that n cannot divide neither uj(Fn) nor u(Fn). 
1. J.H.E. Cohn. "Lucas and Fibonacci numbers and some Diophantine equations.15 Proc. 
Glasgow Math. Assoc. 7 (1965): 24-28. 

E d i t o r s Remarks All solutions used powers of 2 with exponent greater than or equal 
to 6 to settle parts 1-3 of the problem, and quoted the result from [1] above to the effect that 
Ln is a perfect square only for n = 1, 3. However, one does not need the full strength of the 
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result from [1] in this instance. Indeed, since L2 — 3 and L2n — L\n_x — 2 holds for all n > 2, 
it follows easily, by induction, that L2n = 3 (mod 4) holds for all n > 1, and as such these 
numbers cannot be perfect squares. 
Also solved P, B r u c k m a n , V. M a t h e a n d t h e p roposer . 

P lease Send in Proposa l s ! 

i 2 
i The Eleventh International Conference on I 
J Fibonacci Numbers and their Applications I 
m H 
I July 5 - July 9, 2004 I 
I Technical University Carolo-Wilhe mina, I 
I Braunschweig, Germany I 
H m 
1 Local Organizer: H. Harborth 1 
1 Conference Organizer: W. Webb 1 

I Call for Papers: The purpose of the conference is to bring together people from all branches of I 
1 mathematics and science with interests in recurrence sequences, their applications and I 
1 generalizations, and other special number sequences. j 
it n 
I Deadline: Papers and abstracts should be submitted in duplicate to W. Webb by May 1, 2004 at: 1 

1 Department of Mathematics I 
i Washington State University 1 
I Pullman, WA 99164-3113 § 
I- USA I 
I Phone: 509-335-3150 I 

I Electronic submissions, preferably in AMS - TeX, sent to webb@math.wsu. edu I 

1 Local Information: Contact H. Harborth at I 
I Diskrete Mathematik 1 
1 TU Braunschweig I 
I 38023 Braunschweig, Germany 1 
I Phone: 49-531-3917515; 49-531-322213 I 
1 h.harborth@tu-bs.de 1 

1 International Committee: A. Adelberg (U.S.A.), M. Bicknell-Johnson (U.S.A.), C. Cooper I 
1 (U.S.A.), Y. Horibe (Japan), A. Horadam (co-chair)(Australia), J. Lahr (Luxembourg), i 
1 A.Philippou (co-chair)(Greece), G. Phillips (co-chair)(Scotland), A. Shannon (Australia), L. 1 
1 Somer (U.S.A.), J. Turner (New Zealand). I 

1 Local Committee: J-P. Bode, A. Kemnitz, H. Weiss I 

I 1 
j Information: www.mscs.dal.ca/fibonacci/eleventh.html 1 
1 www.mathematik.tu-bs.de/dm/fibonacci 1 
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