result from [1] in this instance. Indeed, since $L_{2}=3$ and $L_{2^{n}}=L_{2^{n-1}}^{2}-2$ holds for all $n \geq 2$, it follows easily, by induction, that $L_{2^{n}} \equiv 3(\bmod 4)$ holds for all $n \geq 1$, and as such these numbers cannot be perfect squares.
Also solved P. Bruckman, V. Mathe and the proposer.

Please Send in Proposals!

The Eleventh International Conference on Fibonacci Numbers and their Applications

July 5 - July 9, 2004
Technical University Carolo-Wilhelmina, Braunschweig, Germany

Local Organizer: H. Harborth
Conference Organizer: W. Webb
Call for Papers: The purpose of the conference is to bring together people from all branches of mathematics and science with interests in recurrence sequences, their applications and generalizations, and other special number sequences.

Deadline: Papers and abstracts should be submitted in duplicate to W. Webb by May 1, 2004 at:
Department of Mathematics
Washington State University
Pullman, WA 99164-3113
USA
Phone: 509-335-3150
Electronic submissions, preferably in AMS - TeX, sent to webb@math.wsu.edu
Local Information: Contact H. Harborth at
Diskrete Mathematik
TU Braunschweig
38023 Braunschweig, Germany
Phone: 49-531-3917515; 49-531-322213
h.harborth@tu-bs.de

International Committee: A. Adelberg (U.S.A.), M. Bicknell-Johnson (U.S.A.), C. Cooper (U.S.A.), Y. Horibe (Japan), A. Horadam (co-chair)(Australia), J. Lahr (Luxembourg), A.Philippou (co-chair)(Greece), G. Phillips (co-chair)(Scotland), A. Shannon (Australia), L.

Somer (U.S.A.), J. Turner (New Zealand).
Local Committee: J-P. Bode, A. Kemnitz, H. Weiss
Information: www.mscs.dal.ca/fibonacci/eleventh.html www.mathematik.tu-bs.de/dm/fibonacci

