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I , I N T R O D U C T I O N 

A positive integer n is said to be a Niven number (or a Harshad number) if it is divisible 
by the sum of its (decimal) digits. For instance, 153 is a Niven number since 9 divides 153, 
while 154 is not* 

Let N(x) denote the number of Niven numbers < x. Using a computer, one can obtain 
the following table: 

X 

10 
100 
1000 

N(x) 
10 
33 
213 

X 

104 

105 

106 

N(x) 
1538 
11872 
95428 

X 

107 

10s 

109 

N(x) 
806095 
6954793 
61574510 

It has been established by R.E. Kennedy & C.N. Cooper [4] that the set of Niven numbers 
is of zero density, and later by I. Vardi [5] that, given any e > 0 

N(x) < 
(logx)1/2" 

(i) 

We have not found in the literature any lower bound for N(x), although L Vardi [5] has 
obtained that there exists a positive constant a such that 

N(x) > a-—^-^ (2) 
v ; (logaj)11/2 v ; 

for infinitely many integers x, namely for all sufficiently large x of the form x = iolofc+n_i~2
3 k 

and n being positive integers satisfying 10n = 45fe + 10. Even though inequality (2) most likely 
holds for all sufficiently large x, it has not yet been proved. More recent results concerning 
Niven numbers have been obtained (see for instance H.G. Grundman [3] and T. Cai [1]). 

Our goal is to provide a non trivial lower bound for N(x) and also to improve on (1). 
Hence we shall prove the following result. 
T h e o r e m : Given any e > 0, then 

x1""6 < N(x) < 
x log log x 

logx 
(3) 

We shall further give a heuristic argument which would lead to an asymptotic formula for 
N(x), namely N(x) ~ Cj^-;, where 

Research supported in part by a grant from CRSNG. 

2003] 431 



ON THE NUMBER OF NIVEN NUMBERS UP TO X 

14 
c= — log 10 « 1.1939. (4) 

2. T H E L O W E R B O U N D F O R N(x) 

We shall establish that given any e > 0, there exists a positive real number xo = xo(e) 
such that 

N(x)>x1~e ioTsdlx>x0. (5) 

Before we start the proof of this result, we introduce some notation and establish two 
lemmas. 

Given a positive integer n = [di,d2,-..,dk], where di , d2, • • •, dk are the (decimal) digits 
of n, we set s(n) = $^ = 1 d» . Hence n is a Niven number if s(n)\n. For convenience we set 
5(0) = 0. 

Further let H stand for the set of positive integers h for which there exist two non negative 
integers a and h such that h = 2a • 106. Hence 

H = {1,2,4,8,10,16,20,32,40,64,80,100,128,160,200,256,320,400,512,640,.. .}. 

Now given a positive integer n, define h(n) as the largest integer h E H such that h <n. For 
instance h(23) = 20 and h(189) = 160. 
L e m m a 1: Given e > 0, there exists a positive integer no such that -^x < 1+e for all n > no-

Proof: Let e > 0 and assume that n > 2. First observe that 

n 
< 1 + e <^=^ logn - logh(n) < log(l + e) := ei, h(n) 

say. It follows from classical results on approximation of real numbers by rational ones that 
there exist two positive integers p and q such that 

0 <5 : = p l o g l 0 - g l o g 2 <ei. 

For each integer n > 2, define 

(6) 

logn 
log 2 

and t := 
logn — r log2 

(7) 

From (6) and (7), it follows that 

I o g n - ( r l o g 2 + £ ( p l o g l 0 - g l o g 2 ) ) < S < eu 

that is 
n 

2r"«* • 10*^ 
< 1 + e. 
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In order to complete the proof of Lemma 1, it remains to establish that 2 r _ ^ • 10tp E H, that 
is that r - qt > 0. But it follows from (7) that 

t < loSn-rlog2 logn _ log2 / l o g n _ \ _ log2 
5 ~ S S \log2 J ~ ~ T ~ ' 

so that 

r — qt > r — q log 2 logn 
(Jog 2 

fffog^ logn _ glog2 __ 
6 log 2 J 

a quantity which will certainly be positive if n is chosen to satisfy 

log^ ^ glog2 
log2 " * + ' 

that is 
n > no := 2(glog2)/5+ll + 1 

Noting that q and 8 depend only on e, the proof of Lemma 1 is complete. 
Given two non negative integers r and y, let 

M(r,y) := #{0 < n < 10r : s(n) = y}. (8) 

For instance M(2,9) = 10. Since the average value of s(n) for n = 0,1, 2 , . . . , 10r — 1 is | r , 
one should expect that, given a positive integer r, the expression M(r,y) attains its maximal 
value at y = [ | r] . This motivates the following result. 
L e m m a 2: Given any positive integer r, one has 

M(r,[4.5r]) > 
10r 

9r + l 

Proof: As n runs through the integers 0 , 1 , 2 , 3 , . . . , 10r — 1, it is clear that s(n) takes on 
9r + l distinct values, namely 0,1,2, 3 , . . . , 9r. This implies that there exists a number y = y(r) 
such that M(r,y) > ĝ M*- By showing that the function M(r,y) takes on its maximal value 
when y = [4.5r], the proof of Lemma 2 will be complete. We first prove: 
(a) If r is even, M(r, 4.5r + y) = M(r, 4.5r - y) for 0 < y < 4.5r; if r is odd, M(r, 4.5r + y + 

0.5) = M(r, 4.5r - y - 0.5) for 0 < y < 4.5r; 
(b) if y < 4.5r, then M(r, y) < M(r, y + 1). 
To prove (a), let 

C: 5r + y if r is even, 
5r + y + 0.5 if r is odd, (9) 
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and consider the set K of non negative integers k < 10r such that s(k) = z and the set L of 
non negative integers £ < 10r such that s(l) = 9r — z. Observe that the function a : K -> L 
defined by 

a(k) ^a([di,d2i-..,dr]) = [9 - d i , 9 - d2j. • • , 9 - d r ] 

is one-to-one. Note that here, for convenience, if n has t digits, t < r, we assume that n begins 
with a string oir — t zeros, thus allowing it to have r digits. It follows from this that |Jff| = |L| 
and therefore that 

M(r,*) = M ( r , 9 r - z ) . (10) 
Combining (9) and (10) establishes (a). 

To prove (b), we proceed by induction on r. Since M(l,y) = 1 for 0 < y < 9, it follows 
that (b) holds for r = 1. 

Now given any integer r > 2, it is clear that 

9 

*=0 

from which it follows immediately that 

Af (r, y + 1) - M(r, y) = M(r - 1, y + 1) - M(r - 1,y - 9). (11) 

Hence to prove (b) we only need to show that the right hand side of (11) is non negative, 
Assuming that y is an integer smaller than 4.5r, we have that y < 4.5r — 0.5 = 4.5(r —1)4-4 and 
hence y = 4.5(r — 1) 4-4 — j for some real number j > 0 (actually an integer or half an integer). 
Using (a) and the induction argument, it follows that M(r — l,y 4- 1) — M{r — l ,y — 9) > 0 
holds if |4.5(r - 1) - (y + 1)| < |4.5(r - 1) - (y - 9)|. Replacing y by 4.5(r - 1) 4- 4 - j , we 
obtain that this last inequality is equivalent to \j — 5| < \j 4- 5|, which clearly holds for any 
real number j > 0, thus proving (b) and completing the proof of Lemma 2. 

We are now ready to establish the lower bound (5). In fact, we shall prove that given any 
e > 0, there exists an integer r0 such that 

N (10r(1+e)) > 10 r ( 1 ° e ) for all integers r > r0. (12) 

To see that this statement is equivalent to (5), it is sufficient to choose XQ > 10r o^1 +^. Indeed, 
by doing so, if -x > x®, then 

10r(l+e) < x < 1()(r+l)(l+e) for ft c e r t a i n r > r Q ? 

in which case 
N{x) > N ( l 0 r ( 1 + £ ) ) > 10r(1™e), 

and since x < I0^r+1^1+e\ we have 

xir+miU < i o r ^ - £ ) < N(x), 
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that is 
xl~61 < 10r(1-£) < N(x), 

for some £\ = ei(r,e) which tends to 0 as e —>- 0 and r —> oo. 
It is therefore sufficient to prove the existence of a positive integer ro for which (12) holds. 
First for each integer r > 1, define the non negative integers a(r) and b(r) implicitly by 

2«(r) . 1Qh(r) = ^([4.5r]). (13) 

We shall now construct a set of integers n satisfying certain conditions. First we limit ourselves 
to those integers n such that s(n) — 2a^ • 1 0 6 ^ . Such integers n are divisible by s(n) if and 
only if their last a(r) -f 6(r) digits form a number divisible by 2a^ • 1 0 5 ^ . Hence we further 
restrict our set of integers n to those for which the (fixed) number v formed by the last 
a(r) + b(r) digits of n is a multiple of s(n). 

Finally for the first digit of n3 we choose an integer d, 1 < d < 9? in such a manner that 

2a(r) . 1Qh(r) _ ^ _d=Q ( m o d gy (14) 

Thus let n be written as the concatenation of the digits of d, u and v, which we write as 
n = [d, w, v], where u is yet to be determined. Clearly such an integer n shall be a Niven 
number if d + s(u) + s(v) = s(n) = 2aW • 1 0 ^ r \ that is if s(u) = 2a^ • 106M - d - *(v). We 
shall now choose u among those integers having at most fi := - '1Q

 4 5
 s^v' digits. Note 

that /3 is an integer because of condition (14). 

Now Lemma 2 guarantees that there are at least ^ p j possible choices for u. 
Let us now find upper and lower bounds for fi in terms of r. 
On one hand, we have 

h([4.5r])-d-s(v) fr([4.5r]) 
^ - il K ~ T 5 ~ -r- (15) 

On the other hand, recalling (13), we have s(v) < 9(a(r) + b(r)) < 9los^[4
2

5rJ ) , and 
therefore 

ft([4.5r])-d-,(t,) M [ 4 . 5 r ] ) - 9 - 9 M f f m 
P 4.5 4.5 ' *• ; 

Using Lemma 1, we have that, if r is large enough, /i([4.5r]) > 4.5r(l — e/2). Hence it follows 
from (16) that 

4 . 5 r ( l - £ / 2 ) - 9 - 9 l 0 ^ i ' 4
2

5 r ] ) 

P> ^ ^ ^—>r(l-e), (17) 

provided r is sufficiently large, say r >r\. 
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Again using (13), we have that 

a(r) + b(r) + 1 < &\ L
 n

 U + 1. log 2 

Since h(n) < n, and choosing r sufficiently large, say r > r2, it follows from this last inequality 
that 

a(r) + b(r) + 1 < , ' ^ + 1 < re: (r > r 2 ) . log 2 

Combining this inequality with (15), we have that 

P + a(r) + 6(r) + 1 < r ( l + e) (r > r 2 ) . (18) 

Hence, because n has /3 + a(r) + &(r) + 1 digits, it follows from (18) that 

n < 10 r ( 1 + e ) (r > r2) (19) 

Since, as we saw above, there are at least <^py ways of choosing u, we may conclude from (19) 

that there exist at least <#pj Niven numbers smaller than 10 r ^ 1 + e \ that is 

jV (l(f U+-A > 1Q^ > 1 Q r ( 1 " g ) > i0Ki-2e) 
V 7 > 9/3 + 1 9 r ( l - e ) + l 

for r sufficiently large, say r > r3, where we used (17) and the fact that <#ry increases with 

Prom this, (12) follows with ro = max(r i , r2 , r 3 ) , and thus the lower bound (5). 

a. T H E U P P E R B O U N D F O R N(x) 

We shall establish that 

» W <330,o8l0. ̂ + f ...el0. ^ ^ C 1 0 " ^ 1 0 ) . « 

from which the upper bound of our Theorem will follow immediately. 
To establish (20), we first prove that for any positive integer r, 

^(io»-)<99-y).i(r + f.io-. (2i) 
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Clearly (20) follows from (21) by choosing r 

In order to prove (21), we first write 

logo: 
log 10 + 1-

where 

and 

JVr(10r) = A(r) + B(r) + l, 

Mr) = # { ! < ^ < 10r : s(n)\n and \s(n) - 4.5r| > 0.5r} 

B(r) = # { 1 < n< 10r : s(n)\n and Ar < s(n) < 5r} 

To estimate A(r), we use the idea introduced by Kennedy & Cooper [4] of considering 
the value 5(71), in the range 0 , l , 2 , . , . , 1 0 r — l a s a random variable of mean JJL = 4.5r and 
variance a2 = 8.25r. This is justified by considering each digit of n as an independant variable 
taking each of the values 051, 2,3, 4,5, 6,7,8,9 with a probability equal to ^ . Thus, according 
to Chebyshev's inequality (see for instance Galambos [2], p. 23), we have 

P(\s(n) - M| > k) < ^ , that is P(\s(n) - 4.5r| > 0.5r) < | | ~ = ™. 

Now multiplying out this probability by the length of the interval [1,10r — 1], we obtain the 
estimate 

A(r)< 33 • 10r 
(22) 

The estimation of B(r) requires a little bit more effort. 
If we denote by a = a(s(n)) the number of digits of s(n), then, since 4r < s(n) < 5r, we 

have 

log4r 
log 10 + 1 < a < 

log5r' 
log 10, + 1. (23) 

We shall write each integer n counted in B(r) as the concatenation n — [c,d], where d = d(n) 
is the number formed by the last a digits of n and c — c{n) is the number formed by the first 
r — a digits of n. Here, again for convenience, we allow c and thus n to begin with a string of 
O's. Using this notation, it is clear that s(n) — s(c) + s(d) which means that s(c) = s(n) — s(d). 
Prom this, follows the double inequality 

s(n) —9a< s(c) < s(n). 

Hence, for any fixed value of s(n), say a = s(n), the number of distinct ways of choosing c is 
at most 

^2 M(r~a,s{c)), 
s(c)=a—9a 

(24) 
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where M(r,y) was defined in (8). 
For fixed values of s(n) and c, we now count the number of distinct ways of choosing d so 

that s(n)\n. This number is clearly no larger than the number of multiples of s(n) located in 
the interval I := [c • 10a, (c + 1) • 10°]. Since the length of this interval is 10a, it follows that 

I contains at most L := s{n) + l multiples of s(n). Since a represents the number of digits 
of s(n), it is clear that L < 10 + 1 = 11. 

We have thus established that for fixed values of s(n) and c, we have at most 11 different 
ways of choosing d. 

It follows from this that for a fixed value a of s(n) E [4r, 5r], the number of "c,d combi-
nations" yielding a positive integer n < 10r such that s(n)|n, that is a|n, is at most 11 times 
the quantity (24), that is 

11 J^ M(r-a,a(c)). (25) 
s(c)=a—9a 

Summing this last quantity in the range 4r < a < 5r, we obtain that 

5r a 

B(r)< 11 ^ 5 3 M(r-<x,s(c))-
a=4r s(c)=a~9a 

Observing that in this double summation, s(c) takes its values in the interval [4r — 9a, 5r] and 
that s(c) takes each integer value belonging to this interval at most 9a times, we obtain that 

5r 

B(r) < 11 • 9a J2 M( r " a' *(c))" 
s(c)=4r—9a 

By widening our summation bounds and using (23), we have that 

B(r) < 99a jrM(r -a,y) = 99a • 1 0 r - 0 < 99 ( p ^ j + l ) • Wr 

Since by (23), a > |°jffi, we finally obtain that 

„ , N „ 99 • log(4r) • 107" 
B(r) < 5i_J . (26) 
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Recalling that iV(lQr) = A(r) + B(r) + 1, (21) follows immediately from (22) and (26), thus 
completing the proof of the upper bound, and thus of our Theorem. 
R e m a r k s : 

1. We treated both r — a and Ar — 9a as non negative integers without justification. Since 
it is sufficient to check that Ar > 9a and since a < l o Sfo+ffi1 0, it is enough to verify 
that Ar > 9 1 ° S I ^ 1

9
0

1 O R 1 0
> which holds for all integers r > 6. For each r < 5, (21) is easily 

verified by direct computation. 
2. Although we used probability theory, there was no breach in rigor. Indeed, this is because 

it is a fact that for n < 10r, the iih digit of n, for each i= 1,2, . . . , r (allowing, as we did 
above, each number n to begin with a string of 0?s so that is has r digits), takes on each 
integer value in [0,9] exactly one time out of ten. 

4. T H E S E A R C H F O R T H E A S Y M P T O T I C B E H A V I O U R O F N(x) 

By examining the table in §1, it is difficult to imagine if N(x) is asymptotic to some 
expression of the form x/L{x), where L(x) is some slowly oscillating function such as logx. 

Nevertheless we believe that, as x -» oo 

N(x) = (c + o(l) — . (27) 
logx 

where c is given in (4). We base our conjecture on a heuristic argument. 
Here is how it goes. First we make the reasonable assumption that the probability that 

s(n)\n is l / s (n ) , provided that s(n) is not a multiple of 3. On the other hand, since 3|s(n) if 
and only if 3|n, we assume that, if 3 || s(n), then the probability that s(n)\n is 3/s(ri). In a 
like manner, we shall assume that, if 9|s(n), then s(n)\n with a probability of 9/s(n). 

Hence using conditional probability, we may write that 

P(s(n)\n) = P(s(n)\n assuming that 3j/(n)) • P(3j/s(n)) (28) 
+ P(s(n)\n assuming that 3 || s(n)) • F(3 || s(n)) 
+ P(s(n)\n assuming that 9|s(n)) • P(9\s(n)) 

1 2 3 2 9 1 7 1 
s(n) 3 s(n) 9 s(n) 9 3 s(n)' 

As we saw above, the expected value of s(n) for n G [0,10r - 1] is | r . Combining this 
observation with (28), we obtain that if n is chosen at random in the interval [0,10r — 1], then 

r , / x. x 7 1 1 4 

Multiplying this probability by the length of the interval [0,10r — 1], it follows that we 
4-lQr 

2 7 T can expect ^ ^ Niven numbers in the interval [0,10r — 1]. 
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Therefore, given a large number x, if we let r = \ Y^JQ •> w e immediately obtain (27). 
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