HEPTAGONAL NUMBERS IN THE FIBONACCI SEQUENCE AND DIOPHANTINE EQUATIONS $4x^2 = 5y^2(5y-3)^2 \pm 16$

B. Srinivasa_Rao

1-5-478/1, New Maruthinagar, Dilsukhnagar, Hyderabad - 500 060, A.P., India (Submitted June 2001-Final Revision October 2001)

1. INTRODUCTION

The numbers of the form $\frac{m(5m-3)}{2}$, where *m* is any positive integer, are called heptagonal numbers. The first few are 1, 7, 18, 34, 55, 81, ..., and are listed in [4] as sequence number A000566. In this paper it is established that 0, 1, 13, 34 and 55 are the only generalized heptagonal numbers (where *m* is any integer) in the *Fibonacci sequence* $\{F_n\}$. These numbers can also solve the Diophantine equations of the title. Earlier, J.H.E. Cohn [1] has identified the squares and Ming Luo (see [2] and [3]) has identified the triangular, pentagonal numbers in $\{F_n\}$. Furthermore, in [5] it is proved that 1, 4, 7 and 18 are the only generalized heptagonal numbers in the *Lucas sequence* $\{L_n\}$.

2. IDENTITIES AND PRELIMINARY LEMMAS

We have the following well known properties of $\{F_n\}$ and $\{L_n\}$:

$$F_{-n} = (-1)^{n+1} F_n$$
 and $L_{-n} = (-1)^n L_n$ (1)

$$2F_{m+n} = F_m L_n + F_n L_m \text{ and } 2L_{m+n} = 5F_m F_n + L_m L_n$$
(2)

$$F_{2n} = F_n L_n \text{ and } L_{2n} = L_n^2 + 2(-1)^{n+1}$$
 (3)

$$L_n^2 = 5F_n^2 + 4(-1)^n \tag{4}$$

$$2|F_n \text{ iff } 3|n \text{ and } 2|L_n \text{ iff } 3|n \tag{5}$$

$$3|F_n \text{ iff } 4|n \text{ and } 3|L_n \text{ iff } n \equiv 2 \pmod{4} \tag{6}$$

$$9|F_n \text{ iff } 12|n \text{ and } 9|L_n \text{ iff } n \equiv 6 \pmod{12} \tag{7}$$

$$L_{8n} \equiv 2 \pmod{3}. \tag{8}$$

If $m \equiv \pm 2 \pmod{6}$, then

$$L_m \equiv 3 \pmod{4} \text{ and } L_{2m} \equiv 7 \pmod{8},\tag{9}$$

$$F_{2mt+n} \equiv (-1)^t F_n (\text{mod } L_m), \tag{10}$$

where n, m, and t denote integers.

Since, N is a generalized heptagonal number if and only if 40N + 9 is the square of an integer congruent to 7(mod 10), we identify those n for which $40F_n + 9$ is a perfect square. We begin with

Lemma 1: Suppose $n \equiv 0 \pmod{2^4 \cdot 17}$. Then $40F_n + 9$ is a perfect square if and only if n = 0. **Proof:** If n = 0, then $40F_n + 9 = 3^2$.

414

NOV.

Conversely, suppose $n \equiv 0 \pmod{2^4 \cdot 17}$ and $n \neq 0$. Then *n* can be written as $n = 2 \cdot 17 \cdot 2^{\theta} \cdot g$, where $\theta \geq 3$ and $2 \not g$. And since for $\theta \geq 3, 2^{\theta+8} \equiv 2^{\theta} \pmod{680}$, taking $k = 2^{\theta}$ if $\theta \equiv 0, 5$ or 7 (mod 8) and $k = 17 \cdot 2^{\theta}$ for the other values of θ , we have

$$k \equiv 32, 128, \pm 136, 256, 272 \text{ or } 408 \pmod{680}.$$
 (11)

Since $k \equiv \pm 2 \pmod{6}$, from (10), we get

$$40F_n + 9 = 40F_{2k(2k+1)} + 9 \equiv 40(-1)^x F_{2k} + 9 \pmod{L_{2k}}.$$

Therefore, using properties (1) to (9) of $\{F_n\}$ and $\{L_n\}$, the Jacobi symbol

$$\left(\frac{40F_n+9}{L_{2k}}\right) = \left(\frac{\pm 40F_{2k}+9}{L_{2k}}\right) = \left(\frac{3}{L_{2k}}\right) \left(\frac{\pm 40\frac{F_{2k}}{3}+3}{L_{2k}}\right) = -\left(\frac{L_{2k}}{3}\right) \left(\frac{\pm 80\frac{F_k}{3}L_k+3L_k^2}{L_{2k}}\right).$$

Letting $u_k = \frac{F_k}{3}$ and $v_k = 80u_k \pm 3L_k$ we obtain

$$\begin{pmatrix} 40F_n + 9\\ L_{2k} \end{pmatrix} = \pm \left(\frac{80u_k L_k \pm 3L_k^2}{L_{2k}}\right) = -\left(\frac{L_{2k}}{80u_k L_k \pm 3L_k^2}\right) = -\left(\frac{L_{2k}}{L_k}\right) \left(\frac{L_{2k}}{v_k}\right)$$
$$= -\left(\frac{-2}{L_k}\right) \left(\frac{\frac{1}{2}(5F_k^2 + L_k^2)}{v_k}\right) = \left(\frac{2}{L_k \cdot v_k}\right) \left(\frac{720F_k^2 + 144L_k^2}{v_k}\right)$$

Since $v_k = \frac{80F_k}{3} \pm 3L_k$, then $144L_k^2 \equiv \frac{102400F_k^2}{9} \pmod{v_k}$ and

$$\left(\frac{720F_k^2 + 144L_k^2}{v_k}\right) = \left(\frac{108880U_k^2}{v_k}\right) = \left(\frac{5 \times 1361}{v_k}\right) = \left(\frac{v_k}{5}\right) \left(\frac{v_k}{1361}\right) = \left(\frac{v_k}{1361}\right)$$
$$= -\left(\frac{80F_k \pm 9L_k}{1361}\right).$$

Furthermore, $\left(\frac{2}{L_k \cdot v_k}\right) = -1$, it follows that $\left(\frac{40F_n+9}{L_{2k}}\right) = \left(\frac{80F_k\pm 9L_k}{1361}\right)$.

But modulo 1361, the sequence $\{80F_n \pm 9L_n\}$ is periodic with period 680 and by (11), $\left(\frac{80F_k \pm 9L_k}{1361}\right) = -1$, for all values of k. The lemma follows.

Lemma 2: Suppose $n \equiv \pm 1, 2, \pm 7, \pm 9, 10 \pmod{133280}$. Then $40F_n + 9$ is a perfect square if and only if $n = \pm 1, 2, \pm 7, \pm 9, 10$.

Proof: To prove this, we adopt the following procedure which enables us to tabulate the corresponding values reducing repetition and space.

Suppose $n \equiv \varepsilon \pmod{N}$ and $n \neq \varepsilon$. Then *n* can be written as $n = 2 \cdot \delta \cdot 2^{\theta} \cdot g + \varepsilon$, where $\theta \geq \gamma$ and $2 \not\mid g$. Then, $n = 2km + \varepsilon$, where *k* is odd, and *m* is even.

2003]

Now, using (10), we choose m such that $m \equiv \pm 2 \pmod{6}$. Thus,

$$40F_n + 9 = 40F_{2km+\epsilon} + 9 \equiv 40(-1)^k F_{\epsilon} + 9 \pmod{L_m}.$$

Therefore, the Jacobi symbol

$$\left(\frac{40F_n+9}{L_m}\right) = \left(\frac{-40F_{\varepsilon}+9}{L_m}\right) = \left(\frac{L_m}{M}\right). \tag{12}$$

But modulo M, $\{L_n\}$ is periodic with period P. Now, since for $\theta \ge \gamma, 2^{\theta+s} \equiv 2^{\theta} \pmod{P}$, choosing $m = \mu \cdot 2^{\theta}$ if $\theta \equiv \zeta \pmod{s}$ and $m = 2^{\theta}$ otherwise, we have $m \equiv c \pmod{P}$ and $\left(\frac{L_m}{M}\right) = -1$, for all values of m. From (12), it follows that $\left(\frac{40F_n+9}{L_m}\right) = -1$, for $n \neq \varepsilon$. For each value of ε , the corresponding values are tabulated in this way (Table A).

ε	N	δ	Y	S	M	P	μ	ζ(mod s)	c (mod P)
±1, 2	$2^2 \cdot 7^2$	7 ²	1	4	31	30	7 ²	2, 3.	2, 16.
±7	2 ⁵ ·7 ²	7 ²	4	36	511	592	7 ² 7	13, 31. 0, 1, 6, 7, 8, ±9, 16, 18, 19, 24, 25,	± 16 , ± 32 , ± 48 , ± 144 , ± 160 , ± 192 , ± 208 , ± 240 , ± 272 , ± 288 .
±9	2 ⁵ ·5·7 ²	5.72	4	48	1351	1552	5.7 ² 7 ² 7	26, 34. 2, 20, 26, 44. 7, 15, 18, 31, 39, 42. 0, 1, 4, 9, 11, 19, 21, 24, 25, 28, 33, 35, 43, 45.	± 32 , ± 48 , ± 64 , ± 112 , ± 208 , ± 256 , ± 304 , ± 352 , ± 368 , ± 432 , ± 464 , ± 480 , ± 528 , ± 560 , ± 592 , ± 672 .
10	2 ⁵ ·7 ² ·17	17·7 ²	4	52	2191	2512	17·7 ² 7 ² 7	$43.$ $0, 8, 26, 34.$ $1, 11, 14, 19, 21, 27, 37, 40, 45, 47.$ $47.$ $\pm 4, 6, 12, \pm 13, 18, \pm 22, 25, 32, 38, 44, 51.$	±32, ±48, ±112, ±128, ±224, ±272, ±432, ±448, ±512, ±624,

Since L.C.M. of $(2^2 \cdot 7^2, 2^5 \cdot 7^2, 2^5 \cdot 5 \cdot 7^2, 2^5 \cdot 7^2 \cdot 17) = 133280$, the lemma follows. As a consequence of Lemma 1 and 2 we have the following.

Corollary 1: Suppose $n \equiv 0, \pm 1, 2, \pm 7, \pm 9, 10 \pmod{133280}$. Then $40F_n + 9$ is a perfect square if and only if $n = 0, \pm 1, 2, \pm 7, \pm 9, 10$.

Lemma 3: $40F_n + 9$ is not a perfect square if $n \neq 0, \pm 1, 2, \pm 7, \pm 9, 10 \pmod{133280}$.

Proof: We prove the lemma in different steps eliminating at each stage certain integers n congruent modulo 133280 for which $40F_n + 9$ is not a square. In each step, we choose an integer m such that the period p (of the sequence $\{F_n\} \mod m$) is a divisor of 133280 and thereby eliminate certain residue class modulo p. For example

Mod 29: The sequence $\{F_n\} \mod 29$ has period 14. We can eliminate $n \equiv \pm 3, \pm 6$ and 12 (mod 14), since $40F_n + 9 \equiv 2, 10, 8$ and 27(mod 29) respectively and they are quadratic nonresidue modulo 29. There remain $n \equiv 0, \pm 1, 2, \pm 4, \pm 5$ or 7(mod 14), equivalently, $n \equiv 0, \pm 1, 2, \pm 4, \pm 5, \pm 7, \pm 9, \pm 10, \pm 13, 14$ or 16(mod 28).

Similarly we can eliminate the remaining values of n. After reaching modulus 133280, if there remain any values of n we eliminate them in the higher modulus (that is in the miltiples of 133280). We tablulate them in the following way (Table B).

Period	Modulus	Required values of <i>n</i> where $\left(\frac{40F_n+9}{1000000000000000000000000000000000000$	Left out values of <i>n</i> (mod <i>k</i>)		
p	m	Required values of <i>w</i> where $\left(\frac{-4u_n+2}{m}\right) = -1$	where k is a positive integer		
14	29	±3, ±6, 12.	0, ±1, 2, ±4, ±5, 7 (mod 14)		
28	13	±13, 16, 18, 24.	0, ±1, 2, 4, ±5, ±7, ±9, 10, 14 (mod 28)		
8	3	±3, 6.	0, ±1, 2, ±7, ±9, 10, ±23, 28,		
56	281	4, 42.	32 (mod 56)		
16	7	4.	0, ±1, 2, ±7, ±9, 10, ±23, 28,		
112	14503	32, ±47, ±49, ±55, 58, 66, 88.	±33, 56 (mod 112)		
32	47	12, 24, 28.	0, ±1, 2, ±7, ±9, 10, ±23, ±33, ±79, ±89, ±103, ±105, ±111, 112, 114, 168 (mod 224)		
10	11	±4, 8.			
40	41	±15, ±17, 32.			
70	71	±19, ±21, ±23, ±27, ±33.			
70	911	±41.	0, ±1, 2, ±7, ±9, 10, ±551, 560, 1010 (mod 1120)		
160	1601	±39, 40, 90, 122, 130.			
100	3041	±79, ±73, 82.			
80	2161	±41, 42.			
140	141961	±61.			
196	97	±19, ±27, 28, ±29, ±35, 56, ±57, ±65, 66, 86, ±91, 122, 150, 178.			
490	491	72, ±77, 100, ±133, ±141, 142, ±147, 170, ±201, ±209, 210, 212, ±219, 310, 352, 430.	0, ±1, 2, ±7, ±9, 10, ±3369, ±3911, 3920 (mod 7840)		
	1471	30, 140, ±149, ±217, 240, 280, 290, 422.			
392	5881	58, ±113, 168.			
7840	54881	±551.			
136	67	8, ±17, ±23, ±25, 26, 32, 34, ±39, 40, ±41, 42, 48, ±55, ±56, ±65, 90, 112, 114.			
238	239	±19, 24, 28, ±35, ±37, ±41, ±43, 44, ±49, ±57, ±69, 70, ±71, ±75, ±77, 86, 100, ±103, ±107, 108, 142, 154, 164, 184, 196, 206.			
680	1361	±73, ±121, ±151, ±167, ±193, ±319, ±321.	0, ±1, 2, ±7, ±9, 10, 66640		
68	1597	±5, ±11, ±14, 20, 38, 64.	(mod 133280)		
2380	2381	560, ±973, 1962, 2102.			
34	3571	±4, ±13, 32.			
1360	5441	160, 322, 970.			
8330	16661	±919, ±1461, 7360.			
0530	124951	±2389.			
26656	39983	±13319.			

Table B

[NOV.

*

P

ŀ

- - - P

.

.

.

.

We now eliminate $n \equiv 66640 \pmod{133280}$, equivalently, $n \equiv 66640$ or 199920 (mod 266560). Now, modulo 449, the sequence $\{40F_n + 9\}$ is periodic with period 448. Also, 66640 $\equiv 336 \pmod{448}, \left(\frac{40F_{336}+9}{449}\right) = -1$ and 199920 $\equiv 112 \pmod{448}, \left(\frac{40F_{112}+9}{449}\right) = -1$. The lemma follows.

3. MAIN THEOREM

Theorem 1: (a) F_n is a generalized heptagonal number only for $n = 0, \pm 1, 2, \pm 7, \pm 9$ or 10; and (b) F_n is a heptagonal number only for $n = \pm 1, 2, \pm 9$ or 10.

Proof: Part (a) of the theorem follows from Corollary 1 and Lemma 3. For part (b), since, an integer N is heptagonal if and only if $40N + 9 = (10.m - 3)^2$ where m is a positive integer. We have the following table.

n	0	±1	2	±7	±9	10
F_n	0	1	1	13	34	55
$40F_n + 9$	3^{2}	7^{2}	7^{2}	23^{2}	37^{2}	47^{2}
m	0	1	1	-2	4	5
L_n	2	±1	3	± 29	± 76	123

Table C.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that if $x_1 + y_1\sqrt{D}$ (where D is not a perfect square and x_1, y_1 are least positive integers) is the fundamental solution of Pell's equation $x^2 - Dy^2 = \pm 1$, then the general solution is given by $x_n + y_n\sqrt{D} = (x_1 + y_1\sqrt{D})^n$. Therefore, by (4), we have

$$L_{2n} + \sqrt{5}F_{2n}$$
 is a solution of $x^2 - 5y^2 = 4$, (13)

while

$$L_{2n+1} + \sqrt{5}F_{2n+1}$$
 is a solution of $x^2 - 5y^2 = -4.$ (14)

We have, by (13), (14), Theorem 1, and Table C, the following two corollaries.

Corollary 2: The solution set of the Diophantine equation $4x^2 = 5y^2(5y-3)^2 - 16$ is $\{(\pm 1, 1), (\pm 29, -2), (\pm 76, 4)\}.$

Corollary 3: The solution set of the Diophantine equation $4x^2 = 5y^2(5y-3)^2 + 16$ is $\{(\pm 2, 0), (\pm 3, 1), (\pm 123, 5)\}.$

REFERENCES

- [1] J.H.E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. **39** (1964): 537-540.
- [2] Ming Luo. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989): 98-108.

2003

- [3] Ming Luo. "Pentagonal Numbers in the Fibonacci Sequence". Proceedings of the Sixth International Conference on Fibonacci Numbers and Their Applications. Washington State University, Pullman, Washington, July 1994.
- [4] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com ~njas/sequences, A000566.
- [5] B. Srinivasa_Rao. "Heptagonal Numbers in the Lucas Sequence and Diophantine Equations $x^2(5x-3)^2 = 20y^2 \pm 16$." To appear in *The Fibonacci Quarterly*.

AMS Classification Numbers: 11B39, 11D25, 11B37

 $\mathbf{A} \mathbf{A} \mathbf{A}$