HEPTAGONAL NUMBERS IN THE FIBONACCI SEQUENCE AND
 DIOPHANTINE EQUATIONS $4 x^{2}=5 y^{2}(5 y-3)^{2} \pm 16$

B. Srinivasa_Rao

1-5-478/1, New Maruthinagar, Dilsukhnagar, Hyderabad - 500 060, A.P., India
(Submitted June 2001-Final Revision October 2001)

1. INTRODUCTION

The numbers of the form $\frac{m(5 m-3)}{2}$, where m is any positive integer, are called heptagonal numbers. The first few are $1,7,18,34,55,81, \ldots$, and are listed in [4] as sequence number A000566. In this paper it is established that $0,1,13,34$ and 55 are the only generalized heptagonal numbers (where m is any integer) in the Fibonacci sequence $\left\{F_{n}\right\}$. These numbers can also solve the Diophantine equations of the title. Earlier, J.H.E. Cohn [1] has identified the squares and Ming Luo (see [2] and [3]) has identified the triangular, pentagonal numbers in $\left\{F_{n}\right\}$. Furthermore, in [5] it is proved that 1, 4, 7 and 18 are the only generalized heptagonal numbers in the Lucas sequence $\left\{L_{n}\right\}$.

2. IDENTITIES AND PRELIMINARY LEMMAS

We have the following well known properties of $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$:

$$
\begin{gather*}
F_{-n}=(-1)^{n+1} F_{n} \text { and } L_{-n}=(-1)^{n} L_{n} \tag{1}\\
2 F_{m+n}=F_{m} L_{n}+F_{n} L_{m} \text { and } 2 L_{m+n}=5 F_{m} F_{n}+L_{m} L_{n} \tag{2}\\
F_{2 n}=F_{n} L_{n} \text { and } L_{2 n}=L_{n}^{2}+2(-1)^{n+1} \tag{3}\\
L_{n}^{2}=5 F_{n}^{2}+4(-1)^{n} \tag{4}\\
2 \mid F_{n} \text { iff } 3 \mid n \text { and } 2 \mid L_{n} \text { iff } 3 \mid n \tag{5}\\
3 \mid F_{n} \text { iff } 4 \mid n \text { and } 3 \mid L_{n} \text { iff } n \equiv 2(\bmod 4) \tag{6}\\
9 \mid F_{n} \text { iff } 12 \mid n \text { and } 9 \mid L_{n} \text { iff } n \equiv 6(\bmod 12) \tag{7}\\
L_{8 n} \equiv 2(\bmod 3) . \tag{8}
\end{gather*}
$$

If $m \equiv \pm 2(\bmod 6)$, then

$$
\begin{gather*}
L_{m} \equiv 3(\bmod 4) \text { and } L_{2 m} \equiv 7(\bmod 8), \tag{9}\\
F_{2 m t+n} \equiv(-1)^{t} F_{n}\left(\bmod L_{m}\right), \tag{10}
\end{gather*}
$$

where n, m, and t denote integers.
Since, N is a generalized heptagonal number if and only if $40 N+9$ is the square of an integer congruent to $7(\bmod 10)$, we identify those n for which $40 F_{n}+9$ is a perfect square. We begin with
Lemma 1: Suppose $n \equiv 0\left(\bmod 2^{4} \cdot 17\right)$. Then $40 F_{n}+9$ is a perfect square if and only if $n=0$. Proof: If $n=0$, then $40 F_{n}+9=3^{2}$.

Conversely, suppose $n \equiv 0\left(\bmod 2^{4} \cdot 17\right)$ and $n \neq 0$. Then n can be written as $n=2 \cdot 17 \cdot 2^{\theta} \cdot g$, where $\theta \geq 3$ and $2 \nless g$. And since for $\theta \geq 3,2^{\theta+8} \equiv 2^{\theta}(\bmod 680)$, taking $k=2^{\theta}$ if $\theta \equiv 0,5$ or $7(\bmod 8)$ and $k=17 \cdot 2^{\theta}$ for the other values of θ, we have

$$
\begin{equation*}
k \equiv 32,128, \pm 136,256,272 \text { or } 408(\bmod 680) \tag{11}
\end{equation*}
$$

Since $k \equiv \pm 2(\bmod 6)$, from (10), we get

$$
40 F_{n}+9=40 F_{2 k(2 x+1)}+9 \equiv 40(-1)^{x} F_{2 k}+9\left(\bmod L_{2 k}\right)
$$

Therefore, using properties (1) to (9) of $\left\{F_{n}\right\}$ and $\left\{L_{n}\right\}$, the Jacobi symbol

$$
\left(\frac{40 F_{n}+9}{L_{2 k}}\right)=\left(\frac{ \pm 40 F_{2 k}+9}{L_{2 k}}\right)=\left(\frac{3}{L_{2 k}}\right)\left(\frac{ \pm 40 \frac{F_{2 k}}{3}+3}{L_{2 k}}\right)=-\left(\frac{L_{2 k}}{3}\right)\left(\frac{ \pm 80 \frac{F_{k}}{3} L_{k}+3 L_{k}^{2}}{L_{2 k}}\right)
$$

Letting $u_{k}=\frac{F_{k}}{3}$ and $v_{k}=80 u_{k} \pm 3 L_{k}$ we obtain

$$
\begin{aligned}
\left(\frac{40 F_{n}+9}{L_{2 k}}\right) & = \pm\left(\frac{80 u_{k} L_{k} \pm 3 L_{k}^{2}}{L_{2 k}}\right)=-\left(\frac{L_{2 k}}{80 u_{k} L_{k} \pm 3 L_{k}^{2}}\right)=-\left(\frac{L_{2 k}}{L_{k}}\right)\left(\frac{L_{2 k}}{v_{k}}\right) \\
& =-\left(\frac{-2}{L_{k}}\right)\left(\frac{\frac{1}{2}\left(5 F_{k}^{2}+L_{k}^{2}\right)}{v_{k}}\right)=\left(\frac{2}{L_{k} \cdot v_{k}}\right)\left(\frac{720 F_{k}^{2}+144 L_{k}^{2}}{v_{k}}\right)
\end{aligned}
$$

Since $v_{k}=\frac{80 F_{k}}{3} \pm 3 L_{k}$, then $144 L_{k}^{2} \equiv \frac{102400 F_{k}^{2}}{9}\left(\bmod v_{k}\right)$ and

$$
\begin{aligned}
\left(\frac{720 F_{k}^{2}+144 L_{k}^{2}}{v_{k}}\right) & =\left(\frac{108880 U_{k}^{2}}{v_{k}}\right)=\left(\frac{5 \times 1361}{v_{k}}\right)=\left(\frac{v_{k}}{5}\right)\left(\frac{v_{k}}{1361}\right)=\left(\frac{v_{k}}{1361}\right) \\
& =-\left(\frac{80 F_{k} \pm 9 L_{k}}{1361}\right)
\end{aligned}
$$

Furthermore, $\left(\frac{2}{L_{k} \cdot v_{k}}\right)=-1$, it follows that $\left(\frac{40 F_{n}+9}{L_{2 k}}\right)=\left(\frac{80 F_{k} \pm 9 L_{k}}{1361}\right)$.
But modulo 1361 , the sequence $\left\{80 F_{n} \pm 9 L_{n}\right\}$ is periodic with period 680 and by (11), $\left(\frac{80 F_{k} \pm 9 L_{k}}{1361}\right)=-1$, for all values of k. The lemma follows.
Lemma 2: Suppose $n \equiv \pm 1,2, \pm 7, \pm 9,10(\bmod 133280)$. Then $40 F_{n}+9$ is a perfect square if and only if $n= \pm 1,2, \pm 7, \pm 9,10$.

Proof: To prove this, we adopt the following procedure which enables us to tabulate the corresponding values reducing repetition and space.

Suppose $n \equiv \varepsilon(\bmod N)$ and $n \neq \varepsilon$. Then n can be written as $n=2 \cdot \delta \cdot 2^{\theta} \cdot g+\varepsilon$, where $\theta \geq \gamma$ and $2 \nmid g$. Then, $n=2 k m+\varepsilon$, where k is odd, and m is even.

Now, using (10), we choose m such that $m \equiv \pm 2(\bmod 6)$. Thus,

$$
40 F_{n}+9=40 F_{2 k m+\varepsilon}+9 \equiv 40(-1)^{k} F_{\varepsilon}+9\left(\bmod L_{m}\right)
$$

Therefore, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{40 F_{n}+9}{L_{m}}\right)=\left(\frac{-40 F_{\varepsilon}+9}{L_{m}}\right)=\left(\frac{L_{m}}{M}\right) \tag{12}
\end{equation*}
$$

But modulo $M,\left\{L_{n}\right\}$ is periodic with period P. Now, since for $\theta \geq \gamma, 2^{\theta+s} \equiv 2^{\theta}(\bmod$ $P)$, choosing $m=\mu \cdot 2^{\theta}$ if $\theta \equiv \zeta(\bmod s)$ and $m=2^{\theta}$ otherwise, we have $m \equiv c(\bmod P)$ and $\left(\frac{L_{m}}{M}\right)=-1$, for all values of m. From (12), it follows that $\left(\frac{40 F_{n}+9}{L_{m}}\right)=-1$, for $n \neq \varepsilon$. For each value of ε, the corresponding values are tabulated in this way (Table A).

ε	N	δ	γ	s	M	P	μ	$\zeta(\bmod s)$	$c(\bmod P)$
$\begin{gathered} \pm 1 \\ 2 \end{gathered}$	$2^{2} \cdot 7^{2}$	7^{2}	1	4	31	30	7^{2}	2, 3.	2, 16.
± 7	$2^{5} \cdot 7^{2}$	7^{2}	4	36	511	592	7^{2}	13, 31.	$\begin{aligned} & \pm 16, \quad \pm 32, \\ & \pm 48, \quad \pm 144, \\ & \pm 160, \pm 192, \\ & \pm 208, \pm 240, \\ & \pm 272, \pm 288 . \end{aligned}$
							7	$\begin{gathered} \hline 0,1,6,7,8, \\ \pm 9,16,18, \\ 19,24,25, \\ 26,34 . \\ \hline \end{gathered}$	
± 9	$2^{5} \cdot 5 \cdot 7^{2}$	$5 \cdot 7^{2}$	4	48	1351	1552	5.7^{2}	$\begin{gathered} 2,20,26, \\ 44 . \\ \hline \end{gathered}$	$\begin{aligned} & \pm 32, \quad \pm 48, \\ & \pm 64, \quad \pm 112, \\ & \pm 208, \pm 256, \\ & \pm 304, \pm 352, \\ & \pm 368, \pm 432, \\ & \pm 464, \pm 480, \\ & \pm 528, \pm 560, \\ & \pm 592, \pm 672, \\ & \pm 688, \pm 704, \\ & \pm 752, \pm 768 \end{aligned}$
							7^{2}	$\begin{aligned} & 7,15,18, \\ & 31,39,42 . \end{aligned}$	
							7	$\begin{aligned} & 0,1,4,9, \\ & 11,19,21, \\ & 24,25,28, \\ & 33,35,43, \\ & 45 . \end{aligned}$	
10	$2^{5} \cdot 7^{2} \cdot 17$	17.7^{2}	4	52	2191	2512	17.7^{2}	0,8, 26, 34.	$\begin{aligned} & \pm 32, \quad \pm 48, \\ & \pm 112, \pm 128, \\ & \pm 224, \pm 272, \\ & \pm 432, \pm 448, \\ & \pm 512, \pm 624, \\ & \pm 1024, \\ & \pm 1040, \\ & \pm 1072, \\ & \pm 1248 \end{aligned}$
							7^{2}	$\begin{aligned} & 1,11,14, \\ & 19,21,27, \\ & 37,40,45, \\ & 47 . \end{aligned}$	
							7	$\begin{array}{ll} \pm 4, & 6, \\ \pm 12, & 18, \\ \pm 22, & 25, \\ 32, & 38, \\ 51 . & 44, \\ \hline \end{array}$	

Table A.

Since L.C.M. of $\left(2^{2} \cdot 7^{2}, 2^{5} \cdot 7^{2}, 2^{5} \cdot 5 \cdot 7^{2}, 2^{5} \cdot 7^{2} \cdot 17\right)=133280$, the lemma follows.
As a consequence of Lemma 1 and 2 we have the following.
Corollary 1: Suppose $n \equiv 0, \pm 1,2, \pm 7, \pm 9,10(\bmod 133280)$. Then $40 F_{n}+9$ is a perfect square if and only if $n=0, \pm 1,2, \pm 7, \pm 9,10$.
Lemma 3: $40 F_{n}+9$ is not a perfect square if $n \not \equiv 0, \pm 1,2, \pm 7, \pm 9,10(\bmod 133280)$.
$\mathbb{P r o o f : ~ W e ~ p r o v e ~ t h e ~ l e m m a ~ i n ~ d i f f e r e n t ~ s t e p s ~ e l i m i n a t i n g ~ a t ~ e a c h ~ s t a g e ~ c e r t a i n ~ i n t e g e r s ~}$ n congruent modulo 133280 for which $40 F_{n}+9$ is not a square. In each step, we choose an integer m such that the period p (of the sequence $\left\{F_{n}\right\} \bmod m$) is a divisor of 133280 and thereby eliminate certain residue class modulo p. For example

Mod 29: The sequence $\left\{F_{n}\right\} \bmod 29$ has period 14 . We can eliminate $n \equiv \pm 3, \pm 6$ and $12(\bmod 14)$, since $40 F_{n}+9 \equiv 2,10,8$ and $27(\bmod 29)$ respectively and they are quadratic nonresidue modulo 29 . There remain $n \equiv 0, \pm 1,2, \pm 4, \pm 5$ or $7(\bmod 14)$, equivalently, $n \equiv$ $0, \pm 1,2, \pm 4, \pm 5, \pm 7, \pm 9, \pm 10, \pm 13,14$ or $16(\bmod 28)$.

Similarly we can eliminate the remaining values of n. After reaching modulus 133280 , if there remain any values of n we eliminate them in the higher modulus (that is in the miltiples of 133280). We tablulate them in the following way (Table B).

HEPTAGONAL NUMBERS IN THE FIBONACCI SEQUENCE ...

$\begin{array}{\|c\|} \hline \text { Period } \\ p \\ \hline \end{array}$	$\begin{gathered} \text { Modulus } \\ m \\ \hline \end{gathered}$	Required values of n where $\left(\frac{40 F_{n}+9}{m}\right)=-1$	Left out values of $\boldsymbol{n}(\bmod \boldsymbol{k})$ where k is a positive integer
14	29	$\pm 3, \pm 6,12$.	$0, \pm 1,2, \pm 4, \pm 5,7(\bmod 14)$
28	13	$\pm 13,16,18,24$.	$\begin{gathered} 0, \pm 1,2,4, \pm 5, \pm 7, \pm 9,10,14 \\ (\bmod 28) \end{gathered}$
8	3	$\pm 3,6$.	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10, \pm 23,28 \\ 32(\bmod 56) \end{gathered}$
56	281	4, 42.	
16	7	4.	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10, \pm 23,28 \\ \pm 33,56(\bmod 112) \end{gathered}$
112	14503	32, $\pm 47, \pm 49, \pm 55,58,66,88$.	
32	47	12, 24, 28.	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10, \pm 23, \pm 33 \\ \pm 79, \pm 89, \pm 103, \pm 105, \pm 111, \\ 112,114,168(\bmod 224) \\ \hline \end{gathered}$
10	11	$\pm 4,8$.	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10, \pm 551 \\ 560,1010(\bmod 1120) \end{gathered}$
40	41	$\pm 15, \pm 17,32$.	
70	71	$\pm 19, \pm 21, \pm 23, \pm 27, \pm 33$.	
	911	± 41.	
160	1601	$\pm 39,40,90,122,130$.	
	3041	$\pm 79, \pm 73,82$.	
80	2161	$\pm 41,42$.	
140	141961	± 61.	
196	97	$\begin{aligned} & \pm 19 . \pm 27,28, \pm 29, \pm 35,56, \pm 57, \pm 65,66 \\ & 86, \pm 91,122,150,178 . \\ & \hline \end{aligned}$	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10, \pm 3369 \\ \pm 3911,3920(\bmod 7840) \end{gathered}$
490	491	$\begin{aligned} & 72, \pm 77,100, \pm 133, \pm 141,142, \pm 147, \\ & 170, \pm 201, \pm 209,210,212, \pm 219,310, \\ & 352,430 . \end{aligned}$	
	1471	30, 140, $\pm 149, \pm 217,240,280,290,422$.	
392	5881	58, $\pm 113,168$.	
7840	54881	± 551.	
136	67	$\begin{aligned} & 8, \pm 17, \pm 23, \pm 25,26,32,34, \pm 39,40, \\ & \pm 41,42,48, \pm 55, \pm 56, \pm 65,90,112,114 . \\ & \hline \end{aligned}$	$\begin{gathered} 0, \pm 1,2, \pm 7, \pm 9,10,66640 \\ (\bmod 133280) \end{gathered}$
238	239	$\begin{aligned} & \pm 19,24,28, \pm 35, \pm 37, \pm 41, \pm 43,44, \pm 49, \\ & \pm 57, \pm 69,70, \pm 71, \pm 75, \pm 77,86,100, \\ & \pm 103, \pm 107,108,142,154,164,184, \\ & 196,206 . \end{aligned}$	
680	1361	$\begin{aligned} & \pm 73, \pm 121, \pm 151, \pm 167, \pm 193, \pm 319, \\ & \pm 321 . \end{aligned}$	
68	1597	$\pm 5, \pm 11, \pm 14,20,38,64$.	
2380	2381	560, $\pm 973,1962,2102$.	
34	3571	$\pm 4, \pm 13,32$.	
1360	5441	160, 322, 970.	
8330	16661	$\pm 919, \pm 1461,7360$.	
	124951	± 2389.	
26656	39983	± 13319.	

Table B

We now eliminate $n \equiv 66640(\bmod 133280)$, equivalently, $n \equiv 66640$ or $199920(\bmod$ 266560). Now, modulo 449 , the sequence $\left\{40 F_{n}+9\right\}$ is periodic with period 448 . Also, 66640 $\equiv 336(\bmod 448),\left(\frac{40 F_{336}+9}{449}\right)=-1$ and $199920 \equiv 112(\bmod 448),\left(\frac{40 F_{112}+9}{449}\right)=-1$. The lemma follows.

3. MAIN THEOREM

Theorem 1: (a) F_{n} is a generalized heptagonal number only for $n=0, \pm 1,2, \pm 7, \pm 9$ or 10 ; and (b) F_{n} is a heptagonal number only for $n= \pm 1,2, \pm 9$ or 10 .

Proof: Part (a) of the theorem follows from Corollary 1 and Lemma 3. For part (b), since, an integer N is heptagonal if and only if $40 N+9=(10 . m-3)^{2}$ where m is a positive integer. We have the following table.

\boldsymbol{n}	0	± 1	2	± 7	± 9	10
$\boldsymbol{F}_{\boldsymbol{n}}$	0	1	1	13	34	55
$40 \boldsymbol{F}_{\boldsymbol{n}}+\boldsymbol{9}$	3^{2}	7^{2}	7^{2}	23^{2}	37^{2}	47^{2}
\boldsymbol{m}	0	1	1	-2	4	5
$\boldsymbol{L}_{\boldsymbol{n}}$	2	± 1	3	± 29	± 76	123

Table C.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that if $x_{1}+y_{1} \sqrt{D}$ (where D is not a perfect square and x_{1}, y_{1} are least positive integers) is the fundamental solution of Pell's equation $x^{2}-D y^{2}= \pm 1$, then the general solution is given by $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$. Therefore, by (4), we have

$$
\begin{equation*}
L_{2 n}+\sqrt{5} F_{2 n} \text { is a solution of } x^{2}-5 y^{2}=4 \tag{13}
\end{equation*}
$$

while

$$
\begin{equation*}
L_{2 n+1}+\sqrt{5} F_{2 n+1} \text { is a solution of } x^{2}-5 y^{2}=-4 \tag{14}
\end{equation*}
$$

We have, by (13), (14), Theorem 1, and Table C, the following two corollaries.
Corollary 2: The solution set of the Diophantine equation $4 x^{2}=5 y^{2}(5 y-3)^{2}-16$ is $\{(\pm 1,1),(\pm 29,-2),(\pm 76,4)\}$.
Corollary 3: The solution set of the Diophantine equation $4 x^{2}=5 y^{2}(5 y-3)^{2}+16$ is $\{(\pm 2,0),(\pm 3,1),(\pm 123,5)\}$ 。

REFERENCES

[1] J.H.E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964): 537-540.
[2] Ming Luo. "On Triangular Fibonacci Numbers." The Fibonacci Quarterly 27.2 (1989): 98-108.
[3] Ming Luo. "Pentagonal Numbers in the Fibonacci Sequence". Proceedings of the Sixth International Conference on Fibonacci Numbers and Their Applications. Washington State University, Pullman, Washington, July 1994.
[4] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com \sim njas/sequences, A000566.
[5] B. Srinivasa_Rao. "Heptagonal Numbers in the Lucas Sequence and Diophantine Equations $x^{2}(5 x-3)^{2}=20 y^{2} \pm 16$." To appear in The Fibonacci Quarterly.

AMS Classification Numbers: 11B39, 11D25, 11B37
国

