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Relat ions involving ce r t a in special p lanar la t t ice paths and ce r t a in 

sequences of in tegers have been studied previously [ 1 ] , [ 2 ] . We will s ta te c e r -

tain bas ic definitions which pe r t a in to these s tud ies , develop additional r e s u l t s 

involving other p lanar la t t ice pa ths , and finally, indicate genera l iza t ions of 

these r e s u l t s for la t t ice paths in k dimensional space . For convenience of 

r e fe rence some of the definitions a r e col lected together and p re sen ted in P a r t 1. 

The remain ing ma te r i a l will be found in P a r t 2. 

P a r t 1 

In Euclidean k-d imensional space the se t X of points such that p belongs 

to X if and only if each coordinate of p i s an in teger i s cal led the unit la t t ice 

of that space . 

The s ta tement that P i s a la t t ice path in a ce r t a in space means that P 

is a sequence such that 

1) each t e r m of P i s a member of the unit la t t ice of that space , and 

2) if X i s a t e r m of P and Y is the next t e r m of P and x^ and yi 

a r e the i coordinates of X and Y respec t ive ly , then ]x^ - y j = 

1 or 0 and for some j , |XJ - y j | = 1. 

If each of X and Y is a point of the unit la t t ice in Euclidean k-d imens ional 

space , then the s ta tement that the la t t ice path P i s a path from X to Y means 

that P i s finite, X is the f i r s t t e r m of P, and Y i s the l a s t t e r m of P0 If 

P i s a la t t ice path, X i s a t e r m of P, and Y is the next t e r m of P , then 

by the s tep \XtY] of P i s meant the line in terval whose end points a r e X 

and Y. 

A la t t ice path P in Euclidean 2 o r 3-space i s said to be s y m m e t r i c with 

r e spec t to the l ine k if and only if it i s t rue that if X i s a point of some s tep 

of P , then e i ther X i s a point of k or t he re ex is t s a point Y of some step 

of P such that k i s the perpendicular b i sec to r of the l ine in terval [X, Y ]. 

Suppose that S = [ (xi9yt), (x2,y2)] i s a s tep of some la t t ice path P in 

Euclidean 2-space9 S i s said to be x - inc reas ing if x2 -xt = 1 and x -dec rea s ing 
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if x2 - xt = - 1 . The t e r m s y - i n c r e a s i n g and y - d e c r e a s i n g a r e s imi la r ly 

defined, A s tep i s sa id to be xy - ine reas ing if i t i s both x - inc rea s ing and 

y - inc rea s ing . To say that S i s x - inc reas ing only means that S i s x -

inc reas ing but nei ther y - i nc r ea s ing nor y-decreasing„ P is said to be x -

monotonically inc reas ing if and only if i t i s t r ue that if 2 i s a s tep of P , 

then 2 is not x -dec rea s ing . The t e r m y-monotonical ly inc reas ing is s i m i -

la r ly defined. A s tep 2 is said to be ver t i ca l if it i s ne i ther x - inc reas ing nor 

x -dec rea s ing . A s tep 2 is said to be horizontal if it i s ne i ther y - i n c r e a s i n g 

nor y -d ec r e a s in g . The s ta tement that the path P is duotonically inc reas ing 

means that P i s both x-monotonically inc reas ing and y-monotonical ly 

increas ing . 

P a r t 2 

In Euclidean 2 - space a path from (0,0) to (n,n) i s said to have p roper ty 

G if and only if: 

1) i t i s duotonically inc reas ing , 

2) it i s s y m m e t r i c with r e s p e c t to the line x + y = n, and 

3) no s tep of i t which contains a point below the l ine x + y = n is 

ve r t i ca l . 

A path having p roper ty G will be cal led a G-path. 

Theorem 1 (Greenwood) 

Let g(0) = 1 and g(l) = 1. Fo r each posi t ive in teger n > 2, le t g(n) 

denote the number of G-paths from (0,0) to (n - 1, n - 1). The sequence 

{g(0)> g U h •8 ° J g(n) J ° ° • } i s the Fibonacci sequence. 

Proof. By definition g(0) = g(l) = 1. Suppose n = 2. The only G-paths 

f rom (0,0) to (1,1) a r e {(0,0), (1,0), (1,1)} and {(0,0), (1,1)}, thus g(2) = 2. 

F o r n = 3, the G-paths from (0,0) to (2,2) a r e {(0,0), (1,0), (2,0), (2,1),(2,2)}9 

{(0,0), (1,0), (2,1), (2,2)} and {(0,0), (1,1), (2 ,2)} , so that g(3) = 3. 

Suppose n > 4. Each G-path from (0,0) to (n - 1, n - 1) has a s i t s 

init ial s tep e i ther [ (0,0), (1,0)] or [(0,0), (1,1)] . If a G-path has as i t s init ial 

s tep [(0,0), (1 ,0)] , then5because of symmetry, i t s t e rmina l s tep i s [(n - 1 , n - 2), 

(n - 1, n - 1 ) ] ; and thus it contains as a subsequence a G-path from (1,0) to 

(n - 1, n - 2). But the number of G-paths from (1,0) to (n - l , n - 2) i s the 

number of G-paths from (0,0) to (n - 2, n - 2), i. e. , g(n - 1). 

Likewise, if a G-path has as i t s initial s tep [(0,0), (1,1) ], then i ts 

t e rmina l s tep i s [(n - 2, n - 2), (n - 1 , n - l ) ] > and i t contains a s a subsequence 
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a G-path from (1,1) to (n - 2, n - 2). The number of such G-paths i s the 

number of G-paths from (0,0) to (n - 3 , n - 3), which is g(n - 2)0 Thus 

g(n) = g(n - 1) + g(n - 2). 

The s ta tement that a path in Euclidean 2-space has p roper ty H means 

that it has p roper ty G and i s such that one of i t s t e r m s belongs to the line 

x + y = n. A. path having proper ty H will be cal led an H-path. 

Obviously, if n i s a posi t ive in teger , then the se t of all H-paths from 

(0,0) to (n,n) i s a p rope r subset of the se t of all G-paths from (0,0) to 

(n,n); y e t , u s i n g an a rgument s im i l a r to the above, we may es tabl i sh the 

following. 

Theorem 2„ 

Let h(0) = 1 and,for each posi t ive in teger n, le t h(n) denote the num-

b e r of H-paths from (0,0) to (n,n). The sequence {h(0),h(l) ,« • • ,h(n),« • . } 

i s the Fibonacci sequence,, 

An obvious but in te res t ing coro l la ry is that the number of H-paths from 

(0,0) to (n,n) i s the number of G-paths from (0,0) to (n - 1, n - 1). 

Greenwood has d i scussed G-paths [1J . A method of enumerat ion dif-

ferent f rom that used by Greenwood leads to the following [ 2 ] , 

Theorem 3. 

Let 

z ( l , i ) 

z(2,i) = i - 1 , where [ ] denotes the g rea te s t in teger function, 

z(3,i) = z(3,i - 1) + z(2,i - 1) 

z(4,i) = z(4 5 i - 2 ) + z (3 , i - 2 ) , 

z(2n,i) = z (2n , i - 2) + z(2n - l , i - 2) , 

z ( 2 n + l , i ) = z (2n+ l , i - 1) + z(2n , i - 1) 
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with the restriction that z(k,i) = 0 if k > i. For each positive integer i, 
let 

i 

f(i) = X/( k j i ) 

fc=i 

The sequence {f(i) |i = 1, 2, • • • } is the Fibonacci sequence. 

The proof is direct and is omitted. A geometric interpretation of the 
numbers z(k,i) and f(i) is given in [2] , 

It is interesting to note the sequence obtained by considering paths in 
3-space that are analogous to H-paths in 2-space. In Euclidean 3-space, a 
path from (0,0,0) to (n,n,n) is said to have property F if and only if it is 
such that: 

1) it is symmetric with respect to the line z = (n/2) in the plane x + 
y = n , 

2) if the step [P l 9 P 2 ] of it is z-increasing only, then P1 belongs to the 
plane x + y = n , 

3) if S is a step of it which is not z-increasing only, then either S is 
x-increasing only, y-inereasing only, or xyz-increasing, and 

4) some term of it belongs to the plane x + y = n. 
We will call a path an F-path if it has a property F„ 
We define f(0) = 1; andsfor each positive integer n, let f(n) denote the 

number of F-paths from (0,0,0) to (n,n,n)c We note that f(l) = 2 and f(2) 
= 5. If n > 2, then each F-path has as its second term either (1,0,0), 
(0,1,0), or (1,1,1). If an F-path from (0,0,0) to (n,n,n) has as its second 
term (1,0,0) or (0,1,0), then it has as its next to last term (n,n - 1, n) or 
(n - 1, n, n) respectively. The number of F-paths from (0,0,0) to (n,n,n) 
which have as their second term either (0,1,0) or (1,0,0) is the number of 
F-paths from (0,0,0) to (n - 1, n - 1, n - 1). Hence,the number of F-paths 
from (0,0,0) to (n,n,n) whose second term is either (1,0,0) or (0,1,0) is 
2f(n - 1). Similarly, the number of F-paths from (0,0,0) to (n,n,n) whose 
second term is (1,1,1) is f(n - 2). Hence, if n > 2, then f(n) = 2f(n - 1) + 
f(n - 2). 
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It i s noted that the express ion f(n) = 2f(n - 1) + f(n - 2) i s the specia l 

c a se of the Fibonacci polynomial f (x) = xf _ (x) + f (x) for f0(x) = 0, 

fj(x) = 1, and x = 2. 

Using the methods of finite difference equations we may obtain an e x p r e s -

sion for calculat ing f(n) directly,, Consider again the r ecu r s ion re la t ion f(n) 

= 2f(n - 1) + f(n - 2) in the form of the second o r d e r homogeneous difference 

equation 

f(n + 2) - 2f(n + 1) - f(n) = 0 '. 

The cor responding c h a r a c t e r i s t i c equation 

r2 - 2r - 1 = 0 

has roo t s 

rt = 1 + \f2 and r2 = 1 - <{2 . 

The genera l solution of the above difference equation is 

f(n) = Ci(l + N/"2)n + C2(l - -\f2)n . 

Using the init ial conditions of f(0) = 1 and f(l) = 2, the constants Ct and 

C2 a r e found to be 

(A/2 + l)/2\l2 and (N/2 - l)/2\[2 

respec t ive ly , so that we have finally 

f ( n ) = (1 + ^ ) n + 1 _ ; (1 - ^ ) n + 1 

2 \[2 

An analys is s i m i l a r to that used to obtain the r ecu r s ion re la t ion for 

F -pa ths in 3-space suffices to show that in k -d imens iona l space the number 

of paths from (0,0,0 , -•• ,0) to (n,n,n,» • • ,n) that a r e analogous to F paths 

in 3-space sa t is f ies the r ecu r s ion re la t ion f(n) = (k - l)f(n - 1) + f(n - k + 1). 
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