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For n a positive integer, the sequence SLP • • • , a2n is said to be a per-
fect sequence for n if (a) each integer i in the range 1 < i < n appears 
exactly twice in the sequence, and (b) the double occurrence of i in the 
sequence is separated by exactly i entries. Thus 4 1 3 1 2 4 3 2 is a per-
fect sequence for n = 4. The problem of determining all integers n having 
a perfect sequence is posed in [l] and resolved in [2] and [3]. In particular, 
n has an associated perfect sequence if and only if n = 3 or 4 (Mod 4). 

In [4], the problem is generalized by introducing the notion of a perfect 
s-sequence for an integer n. Namely, a perfect s-sequence for n (with s, 
n > 0) is a sequence of length sn such that (a) each of the integers 1, 2, v • , 
n occurs exactly s times in the sequence and (b) between any two consecutive 
occurrences of the integer i there are exactly i entries. The problem of 
determining all s and n for which there are perfect s-sequences is then 
posed in [4]. (The existence of a perfect s-sequence for any n with s > 2 is 
yet in doubt.) It is shown in [4] that no perfect 3-sequences exist for n = 2, 
3, 4, 5, and 6. 

The following theorems expand upon the above results pertaining to the 
non-existence of perfect s-sequences for various classes of n and s. 

Theorem 1. Let s = 2t. Then there is no generalized s-sequence for 
n = 1 or 2 (Mod 4). 

Proof. Let p. denote the position of the first occurrence of the integer 
i (1 < i < n) in the sequence. The integer i then occurs in positions p., 
p. + (i + 1), • • • , p. + (s - l)(i•+ 1). The sn integers p. + j(i + 1) (with i = 1, 
• • • ,n; j = 0 ,1 , • • • , s - 1) are however the integers 1,. . . , sn in some order. 
Thus 

n s-i sn 

EE{Pi + j ( i +1)} = E k -: 

i=i 3=0 k=i 

Letting 
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n 
p = • E Pi • 

i=i 

the latter equality yields 
s r , (s - l)s <(n + l)(n + 2) A_ sn(sn + l) 

or 

P = n | ( s + l ) n - (3s - 5)\ 
4 

Inasmuch as P is an integer, the numerator N = n{(s + i)n - (3s - 5) | must 
be divisible by 4. But for n E 1 (Mod 4), 

N = (s + 1) - (3s - 5) = -4t + 6 = 2 (Mod 4) , 

where s = 2t, which is impossible. Similarly, for n = 2 (Mod 4), 

N = 2{2(s + 1) - (3s - 5)} = -4t + 14 = 2 (mod 4) 

which is also impossible. 

We now extend the results in [4] by proving there is no 3-sequence for 
n = 2, 3, 4, 5, 6, or 7 (Mod 9). Actually we show somewhat more in the next 
theorem. 

Theorem 2. Let s = 6r + 3 (with r >. 0). Then there is no perfect s-
sequence for any n = 2, 3, 4, 5, 6, or 7 (Mod 9). 

Proof. Let q. denote the position that integer i occurs for the (3r + 
2) time (i. e . , q. is the position of the "middle" occurrence of i). Then i 
occurs in positions q. + j(i + 1) for j = -2(2r + 1), -3r, • • • , 3r, (3r + 1). 
The sn integers q. + j(i + 1) (with i = 1,• • • ,n; j = »(3r + 1),• • • ,3 r + 1) 
are then the integers 1, 2, 3, • • * , sn in some order. Thus 
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n 3r+i sn 

i=i j=-(3r+i) k=i 

Letting 

n 

i = i • 

and noting that the linear terms on the left-hand side of the last equation cancel, 
we have 

s Q + 2 / O r + D(3r + 2)s| |(n + l)(n + 2)(2n + 3) _ ±\ 

sn(sn + i)(2sn + 1) 
6 

Cancelling out s and collecting terms yields Q = M/l§> where the numerator 
M is given by 

M = (198r2 + 198r + 50)n3 - (81r2 + 27r - 9)n2 - (117r2 + 117r + 23)n . 

Inasmuch as Q is an integer, the numerator M must be divisible by 9. But 

M = 50n3 - 23nl = 5(n3 - n) (Mod 9). 

It is easily verified from the latter that for the values of n under considera-
tion, namely, n = 2, 3, 4, 5, 6, or 7 (Mod 9) we have M = 3 or 6 (Mod 9). 
Thus M is not divisible by 9 which provides a contradiction. 
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FIBONACCIAN ILLUSTRATION OF L'HOSPITAL'S RULE 
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In [1] t he r e is the s ta tement : using the convention F 0 / F 0 = 1." [ F = 
F ^ + F *> F 0 = 0 , F i = 11. . • n+i n-2 u * J 

In this note it will be shown how the equation F 0 / F 0 = 1 follows na tura l ly 

from LTHospital 's Rule applied to the continuous function 

F = - A - ( (£x _ 4TX COSTTX) [</> = 2"1(1 + V § ) ] 
X \ / 5 

F obviously reduces to the Fibonacci numbers F when n = 0, ±1 , 

±2, ±3, • •• . Then 

(</> - <t> cos 7rx) 

= V1L 
V§ 

(</> - <f)~ COS TTX) 

dx (<f> - <f> COS TTX) 

^ (<f)X - $ X COS 7TX) 

x-o Jx=o 

(log <())<}) - (log<ft 1)<t> COS TTX + <fo~ TTSin TTX 

(log <f))(f> - (log <t>~ ) 0 " cos irx + 4>~ IT sin -rrx 

log<fr - log <f = 

log<t> - log $"" 

x=o 

(Continued on p. 150.) 


