ON THE GENERALIZED LANGFORD PROBLEM

EUGENE LEVINE
Gulton Systems Research Group, Inc., Mineola, New York

For n a positive integer, the sequence $a_{1}, \cdots, a_{2 n}$ is said to be a perfect sequence for n if (a) each integer i in the range $1 \leq i \leq n$ appears exactly twice in the sequence, and (b) the double occurrence of i in the sequence is separated by exactly i entries. Thus 41312432 is a perfect sequence for $n=4$. The problem of determining all integers n having a perfect sequence is posed in [1] and resolved in [2] and [3]. In particular, n has an associated perfect sequence if and only if $\mathrm{n} \equiv 3$ or $4(\operatorname{Mod} 4)$.

In [4], the problem is generalized by introducing the notion of a perfect s-sequence for an integer n. Namely, a perfect s-sequence for n (with s, $n>0$) is a sequence of length $s n$ such that (a) each of the integers $1,2, \cdots$, n occurs exactly s times in the sequence and (b) between any two consecutive occurrences of the integer i there are exactly i entries. The problem of determining all s and n for which there are perfect s-sequences is then posed in [4]. (The existence of a perfect s -sequence for any n with $\mathrm{s}>2$ is yet in doubt.) It is shown in [4] that no perfect 3-sequences exist for $\mathrm{n}=2$, $3,4,5$, and 6.

The following theorems expand upon the above results pertaining to the non-existence of perfect s-sequences for various classes of n and s.

Theorem 1. Let $s=2 t$. Then there is no generalized s-sequence for $\mathrm{n} \equiv 1 \operatorname{or} 2(\operatorname{Mod} 4)$.

Proof. Let p_{i} denote the position of the first occurrence of the integer $i(1 \leq i \leq n)$ in the sequence. The integer i then occurs in positions p_{i}, $p_{i}+(i+1), \cdots, p_{i}+(s-1)(i+1)$. The sn integers $p_{i}+j(i+1)$ (with $i=1$, $\cdots, \mathrm{n} ; \mathrm{j}=0,1, \cdots, \mathrm{~s}-1$) are however the integers $1, \ldots$, sn in some order.
Thus

$$
\sum_{i=1}^{n} \sum_{j=0}^{s-1}\left\{p_{i}+j(i+1)\right\}=\sum_{k=1}^{s n} k
$$

Letting
(Received June 1966) 135

$$
P=\sum_{i=1}^{n} p_{i}
$$

the latter equality yields

$$
s P+\frac{(s-1) s}{2}\left\{\frac{(n+1)(n+2)}{2}-1\right\}=\frac{s n(s n+1)}{2}
$$

or

$$
P=\frac{n\{(s+1) n-(3 s-5)\}}{4}
$$

Inasmuch as P is an integer, the numerator $N=n\{(s+1) n-(3 s-5)\}$ must be divisible by 4 . But for $\mathrm{n} \equiv 1(\operatorname{Mod} 4)$,

$$
\mathrm{N} \equiv(\mathrm{~s}+1)-(3 \mathrm{~s}-5) \equiv-4 \mathrm{t}+6 \equiv 2(\operatorname{Mod} 4)
$$

where $s=2 t$, which is impossible. Similarly, for $n \equiv 2(\operatorname{Mod} 4)$,

$$
\mathrm{N} \equiv 2\{2(\mathrm{~s}+1)-(3 \mathrm{~s}-5)\} \equiv-4 \mathrm{t}+14 \equiv 2(\bmod 4)
$$

which is also impossible.

We now extend the results in [4] by proving there is no 3 -sequence for $\mathrm{n} \equiv 2,3,4,5,6$, or $7(\operatorname{Mod} 9)$. Actually we show somewhat more in the next theorem.

Theorem 2. Let $\mathrm{s}=6 \mathrm{r}+3$ (with $\mathrm{r} \geq 0$). Then there is no perfect s sequence for any $\mathrm{n} \equiv 2,3,4,5,6$, or $7(\operatorname{Mod} 9)$.

Proof Let q_{i} denote the position that integer i occurs for the (3r + 2) th time (i. e., q_{i} is the position of the "middle" occurrence of i). Then i occurs in positions $q_{i}+j(i+1)$ for $j=-2(2 r+1),-3 r, \cdots, 3 r,(3 r+1)$. The sn integers $q_{i}+j(i+1)$ (with $\left.i=1, \cdots, n ; j=-(3 r+1), \cdots, 3 r+1\right)$ are then the integers $1,2,3, \cdots$, sn in some order. Thus

$$
\sum_{i=1}^{n} \sum_{j=-(3 r+1)}^{3 r+1}\left\{q_{i}+j(i+1)\right\}^{2}=\sum_{k=1}^{s n} k^{2}
$$

Letting

$$
Q=\sum_{i=1}^{n} q_{i}^{2}
$$

and noting that the linear terms on the left-hand side of the last equation cancel, we have

$$
\begin{gathered}
s Q+2\left\{\frac{(3 r+1)(3 r+2) s}{6}\right\}\left\{\frac{(n+1)(n+2)(2 n+3)}{6}-1\right\} \\
=\frac{\operatorname{sn}(s n+1)(2 s n+1)}{6}
\end{gathered}
$$

Cancelling out s and collecting terms yields $Q=M / 18$, where the numerator M is given by

$$
M=\left(198 r^{2}+198 r+50\right) n^{3}-\left(81 r^{2}+27 r-9\right) n^{2}-\left(117 r^{2}+117 r+23\right) n
$$

Inasmuch as Q is an integer, the numerator M must be divisible by 9 . But

$$
M \equiv 50 n^{3}-23 n \equiv 5\left(n^{3}-n\right) \quad(\operatorname{Mod} 9)
$$

It is easily verified from the latter that for the values of n under consideration, namely, $n \equiv 2,3,4,5,6$, or $7(\operatorname{Mod} 9)$ we have $M \equiv 3$ or $6(\operatorname{Mod} 9)$. Thus M is not divisible by 9 which provides a contradiction.

REFERENCES

1. Langford, C. D., Problem, Math. Gaz. 42 (1958), p. 228.
2. Priday, C. J., 'On Langford's Problem (I)," Math. Gaz. 43 (1959) , pp. 250253.
3. Davies, Roy O. , "On Langford's Problem (II)," Math. Gaz. 43 (1959), pp. 253-255.
4. Gillespie, F. S. and Utz, W. R., "A Generalized Langford Problem," Fibonacci Quarterly, Vol. 4 (1966), pp. 184-186.

FIBONACCIAN ILLUSTRATION OF L'HOSPITAL'S RULE

Allan Scott
Phoenix, Arizona

In [1] there is the statement: using the convention $\mathrm{F}_{0} / \mathrm{F}_{0}=1 . "\left[\mathrm{~F}_{\mathrm{n}}=\right.$ $\left.F_{n+1}+F_{n-2}, F_{0}=0, F_{1}=1\right]$.

In this note it will be shown how the equation $\mathrm{F}_{0} / \mathrm{F}_{0}=1$ follows naturally from L'Hospital's Rule applied to the continuous function

$$
\mathrm{F}_{\mathrm{x}} \equiv \frac{1}{\sqrt{5}}\left(\phi^{\mathrm{x}}-\phi^{-\mathrm{x}} \cos \pi \mathrm{x}\right) \quad\left[\phi=2^{-1}(1+\sqrt{5})\right]
$$

F_{x} obviously reduces to the Fibonacci numbers F_{n} when $\mathrm{n}=0, \pm 1$, $\pm 2, \pm 3, \cdots$. Then

$$
\begin{aligned}
\frac{\mathrm{F}_{0}}{\mathrm{~F}_{0}} & \left.\left.=\frac{\frac{1}{\sqrt{5}}\left(\phi^{\mathrm{x}}-\phi^{-\mathrm{x}} \cos \pi \mathrm{x}\right)}{\frac{1}{\sqrt{5}}\left(\phi^{\mathrm{X}}-\phi^{-\mathrm{x}} \cos \pi \mathrm{x}\right)}\right]_{\mathrm{X}=0}=\frac{\frac{\mathrm{d}}{\mathrm{dx}}\left(\phi^{\mathrm{x}}-\phi^{-\mathrm{x}} \cos \pi \mathrm{x}\right)}{\frac{\mathrm{d}}{\mathrm{dx}}\left(\phi^{\mathrm{X}}-\phi^{-\mathrm{x}} \cos \pi \mathrm{x}\right)}\right]_{\mathrm{x}=0} \\
& \left.=\frac{(\log \phi) \phi^{\mathrm{X}}-\left(\log \phi^{-1}\right) \phi^{-\mathrm{x}} \cos \pi \mathrm{x}+\phi^{-\mathrm{x}} \pi \sin \pi \mathrm{x}}{(\log \phi) \phi^{\mathrm{X}}-\left(\log \phi^{-1}\right) \phi^{-\mathrm{x}} \cos \pi \mathrm{x}+\phi^{-\mathrm{x}} \pi \sin \pi \mathrm{x}}\right]_{\mathrm{x}=0} \\
& =\frac{\log \phi-\log \phi^{-1}}{\log \phi-\log \phi^{-1}}=1
\end{aligned}
$$

(Continued on p. 150.)

