where P_n is the Pell number defined by P_1 = 1, P_2 = 2, and P_{n+2} = $2P_{n+1}$ + P_n .

Solution by Phil Mana, University of New Mexico, Albuquerque, New Mexico.

Letting $w = 2x \pm 1$ changes $x^2 + (x \pm 1)^2 = z^2$ into $w^2 - 2z^2 = -1$. Let Z be the ring of the integers and let Z be the ring consisting of the real numbers $\alpha = z + b\sqrt{2}$ with a and b in Z. Let V consist of the positive real numbers $\alpha = a + b\sqrt{2}$ of $Z[\sqrt{2}]$ such that $a^2 - 2b^2 = -1$. Then V can be shown to be a group under multiplication. Since V has no number between 1 and $1 + \sqrt{2}$, it follows that V is the cyclic group generated by $1 + \sqrt{2}$. The odd powers $(1 + \sqrt{2})^{2n-1}$ lead to $a^2 - 2b^2 = -1$. Therefore the positive integral solutions of $w^2 - 2z^2 = -1$ are obtained by equating "rational" and "irrational" parts of $w_n + z_n\sqrt{2} = (1 + \sqrt{2})^{2n-1}$, i. e.,

$$w_n = \left[(1 + \sqrt{2})^{2n-1} + (1 - \sqrt{2})^{2n-1} \right] / 2, \quad z_n = \left[(1 + \sqrt{2})^{2n-1} - (1 - \sqrt{2})^{2n-1} \right] / 2\sqrt{2}.$$

The desired formulas then may be found using the analogue $P_n = [(1 + \sqrt{2})^n] - (1 - \sqrt{2})^n]/2\sqrt{2}$ of one of the Binet formulas.

Also solved by A. C. Shannon and the proposer.

* * * * *

(Continued from p. 176)

$$\begin{array}{lll} P_{3}(x) &=& 32 - 13x - 99x^{2} - 32x^{3} + 9x^{4} + x^{5} \\ P_{4}(x) &=& 243 + 1181x - 1952x^{2} - 1271x^{3} + 257x^{4} + 32x^{5} \\ P_{5}(x) &=& 3125 + 7768x - 15851x^{2} - 9752x^{3} + 1944x^{4} + 243x^{5} \\ \\ \sum_{n=0}^{\infty} F_{n+k}^{6} x^{n} &=& \frac{P_{k}(x)}{1 - 13x - 104x^{2} + 260x^{3} + 260x^{4} - 104x^{5} - 13x^{6} + x^{7}} \\ & k = 0, 1, 2, 3, 4, 5, 6 \\ P_{0}(x) &=& x(1 - 12x - 53x^{2} + 53x^{3} + 12x^{4} - x^{5}) \\ P_{1}(x) &=& 1 - 12x - 53x^{2} + 53x^{3} + 12x^{4} - x^{5} \\ P_{2}(x) &=& 1 + 51x - 207x^{2} - 248x^{3} + 103x^{4} + 13x^{5} - x^{6} \\ P_{3}(x) &=& 64 - 103x - 508x^{2} - 157x^{3} + 117x^{4} + 12x^{5} - x^{6} \\ P_{4}(x) &=& 729 + 6148x - 16,797x^{2} - 16,523x^{3} + 6,668x^{4} + 831x^{5} - 64x^{6} \\ P_{5}(x) &=& 15,625 + 59,019x - 206,063x^{2} - 182,872x^{3} + 76,644x^{4} + 9413x^{5} \\ &=& 772x^{6} \end{array}$$

 $P_6(x) = 262,144 + 1,418,937x - 4,245,372x^2 - 3,985,856x^3 + 1,634,413x^4 + 202,396x^5$ (Continued on p. 166.)