We summarize these results in the following.
Theorem. The solutions of (2) are as follows. If $p=q, f(x)$ is arbitrary and $g(x)=f(x)$. If $p \neq q$, the only monic solutions occur when $p=2$ and $q=1$, in which case $f(x)$ and $g(x)$ are defined by (12), where a is an arbitrary real constant. Non-monic solutions for that case can be found using (13).

As an example of these results suppose that $p=3$ and $q=4 . \quad$ By (14) and (17) we have

$$
\left\{\sum_{x=1}^{n}\left(4 x^{3}-6 x^{2}+4 x-1\right)\right\}^{3}=\left\{\sum_{x=1}^{n}\left(3 x^{2}-3 x+1\right)\right\}^{4}, \quad(n=1,2,3, \cdots)
$$

REFERENCE

1. Allison, "A Note on Sums of Powers of Integers," American Mathematical Monthly, Vol. 68, 1961, p. 272.

A NUMBER PROBLEM

J. Wlodarski

Porz-Westhoven, Federal Republic of Germany
There are infinite many numbers with the property: if units digit of a positive integer, M, is 6 and this is taken from its place and put on the left of the remaining digits of M , then a new integer, N , will be formed, such that $\mathrm{N}=6 \mathrm{M}$. The smallest M for which this is possible is a number with 58 digits (1016949 • . 677966).

Solution: Using formula

$$
\frac{6 x}{1-4 x-x^{2}}=3 \sum_{n=0}^{\infty} F_{3 n} x^{n}
$$

with $\mathrm{x}=0,1$ we have $1,01016949 \cdots 677966$, where the period number (behind the first zero) is $\mathrm{M}^{\text {. }}$
問 016949152542372881355932203389830508474576271186440677966. (Continued on p. 175.)

