$$
x^{2} B_{n}\left(x^{2}\right)=x f_{2 n+2}(x)
$$

or

$$
\begin{equation*}
\mathrm{B}_{\mathrm{n}}\left(\mathrm{x}^{2}\right)=\frac{1}{\mathrm{x}} \mathrm{f}_{2 \mathrm{n}+2}(\mathrm{x}) \tag{29}
\end{equation*}
$$

Thus, $B_{n}(x), b_{n}(x)$ and $f_{n}(x)$ are interrelated.

$$
\text { (See also H-73 Oct. } 1967 \text { pp 255-56) }
$$

REFERENCES

1. A. M. Morgan-Voyce, 'Ladder Network Analysis Using Fibonacci Numbers," IRE. Transactions on Circuit Theory, Vol. CT-6, Sept. 1959, pp. 321-322.
2. M. N. S. Swamy, 'Properties of the Polynomials Defined by Morgan-Voyce," Fibonacci Quarterly, Vol. 4, Feb. 1966, pp. 73-81.
3. M. N. S. Swamy, "More Fibonacci Identities," Fibonacci Quarterly, Vol. 4, Dec. 1966, pp. 369-372。
4. M. N. S. Swamy, Problem B-74, Fibonacci Quarterly, Vol. 3, Oct. 1965, p. 236.
(Continued from p. 161.)
(Compare this problem with $\mathrm{H}-65$ and above solution formula with the formula

$$
\frac{2 x}{1-4 x-x^{2}}=\sum_{n=0}^{\infty} F_{3 n} x^{n}
$$

in the Fibonacci Quarterly, Vol. 2, No. 3, p. 208.)

