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1. INTRODUCTION

We define the Fibonacci numbers as usual by means of

= = = >

FO 0, F1 1, F Fn + Fn—i (n = 1).

We shall be concerned with the problem of determining the number of repre-
sentations of a given positive integer as a sum of distinct Fibonacci numbers.
More precisely we define R(N) as the number of representations

(L.1) N = Fy FF e T,
where
(1.2) .k1>k2>"'> er 2;

the integer r is allowed to vary. We shall refer to (1.1) as a Fibonacci rep-
resentation of N provided (1.2) is satisfied.

This definition is equivalent to

(e o] oo
(1.3) I (1+yFn) = ZR‘(N) e
n=2 N=0

with R(0) = 1. We remark that Hoggatt and Basin [ 4] have discusseda close-
ly related function defined by

20 F o
(1.9 Ma+y D) = Y RNy .
n=1 N=0
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Comparing (1.4) with (1.3) it is evident that
(1.5) R'(N) = R(N) + R(N - 1)

Ferns [3] and Klarner [5] have also discussed the problem of represent-
ing an integer as a sum of distinct Fibonacci numbers. We recall that by a
theorem of Zeckendorf [1] the representation (1.1) is unique provided the kj

satisfy the inequalities

e _ > i = . _1)- >
(1.6) kj kj+1 2 (=1, , T - 1); kr 2
We call such a representation the canonical representation of N.
Rather than work directly with R(N) we shall find it convenient to define

the function A(m,n) by means of

(1.7) m@+x % oy = Z Alm,n)x"y" .
n=t m,n=0

It is easily seen that A(m,n) satisfies the recurrence

(1.8) Am,n) = Ah-m,n) + Ah-m,m-1) .

Also, as we shall see,

(1.9) R(N) = A(e(N),N) ,
where
(1.10) e(N) = Fk1_1+Fk2_1+"' +Fkr-1 s

and the ks are determined by (1.1); the value of e(N) is independent of the
particular Fibonacci representation employed. . In particular we may assume
that the representation (1.1) is canonical. Indeed most of the theorems of the

paper make use of the canonical representation.
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Inparticular it follows from (1.9) that for fixed n there is a unique value
of m, namely e(n), such that A(m,n) # 0.

It is helpful to make a short list of exponent pairs occurring in the right
member of (1.7), that is, pairs (m,n) suchthat A(m,n) # 0. Usingthe recur-
rence (1.8) we get the following:

11, 12|23[34 35|46, 47|5 8]

69, 6107 11| 8 12, 8 13| 9 14, 9 15 10 16 |

11 17, 11 18| 12 19, 12 20| 13 21| 14 22, 14 23| 15 24 |
"+ 16 25, 16 26| 17 27, 17 28| 18 29| 19 30, 19 31‘| 30 32|

21 33, 21 34| 22 85, 22 36| 23 37| 24 38, 24 39|

25 40, 25 41| 26 42| 27 43, 27 44| 28 45|

This suggests that for given n, there are just one or two values of m
such that A(m,n) # 0. As we shall see, this is indeed the case.

The first main result of the paper is a reduction formula (Theorem 1)
which theoretically enables one to evaluate R(N) for arbitrary N. While ex-
plicit formulas are obtained for r = 1,2,3 in a canonical representation, the
general case is very complicated. If, however, we assume that all the ks
have the same parity the situationis much more favorable. Indeed if we assume
that

N = F2k1 + oeee o+ szr (ky> <> kp= 1)
and put
jszks_ Ko+t (6 = 1, cr, v -1) Jr:kr ’
f.=8Gy s ip) =RM), S = 1+f+fh+-r +1f

then we have

So=1, Sy =ji1+1, Sp = (r+1Spqy-Spp (r=2)

In particular if j; = -+ = jp = j we have
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Sr _ z (—l)t (rt— t ) (j + 1)r—2t

2t r

Returning to (1.10) web show also that if kr > 2, then e(N) :{a‘iN},
the integer nearest to o~ IN, where o = (1 + A5)/2, while for kr =2, e(N)
= [@7IN] + 1.

Additional applications of the method developed in this paper willappear
later.

Section 2

As noted above, by the theorem of Zeckendorf, the positive N possesses

a unique representation

2.1) N = Fk1 + sz + .. +Fkr ,
with
(2.2) k., -k,,., 22 (=1,-+-,r-1); k_=22.

j jtt

When (2.2) is satisfied we shall call (2.1) the canonical representation of N.
Then the set of integers (ky,ky,***,ky) is uniquely determined by N and
conversely.

The following lemma will be required.

Lemma. Let

(2.3) N = F o+ +Fkr:Fj1+...+FjS ,
where
(2-4) k1> k2> cee > kr>- 2 j1> j2>...> JSZ 2

be any two Fibonacci representations of N. Then
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(2_5) Fkl_i 4 eee 4 Fkr—1 = Fj1_1 4 eee 4+ ]_:‘js__1

Proof. The lemma obviously holds for N = 1. We assume that it holds

up to and including the value N - 1. If ky = j; then (2.3) implies

e = e . <
Fi, F0 tFg = Ty e aF < N

and (2.5) is an immediate consequence of the inductive hypothesis. We may

accordingly assume that k; > j;. Since
+Fy+ Fg++ee +F =F -2,

we must have k; = j;+ 1. If ky = k; - 1 we can complete the induction as in

the previous case. If ky = ky - 2, (2.3) implies

(2.6) 2F, + F +"'+Fkr:Fj2+"'+FjS )

with ja < koo If jo< ko,

“es . < ces < <
o FFj S Fpt Fyhen 4 F < F < 2F
which contradicts (2.6). If j, = kg, (2.6) reduces to
F +F +-:++F =TF ++++F. < N.
ko ks kr is is
Then by the inductive hypothesis
(2.7 sz_l + st_i oo A P = F33—1 et Fyg
Since j;3 = ky -1, jy = kg = kg - 2, we have
F =F, =F, _+F, =F., +F. s
ky-1 i1 ji-t -2 =t et

so that (2.7) implies (2.5).
Finally there is the possibility Fk < Fk - 2. In this case (2.3) reduces
2 1
to
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(2.8) + F +...+Fk = F, +ee+ +F; = N'< N;
r J2

Pl ¥ g, is

each member of (2.8) is a Fibonacci representation of N'. By the inductive

hypothesis

(2.9) eee | 4 eoe +Fkr—1: F + eee + R

k-3 * Flpet jamt Jg-t

Since j1 -1 = ky -2, (2.9) implies

+ + oo = + ree + P
Fk1 Fkg-i Fkl‘_i Fj1—1 Fjg—l * F]S"1

and the induction is complete.
This evidently completes the proof of the lemma.
We now make the following
Definition. Let

= cee S 60> >
(2.10) N o= By ke P Gy k.2 2)

be any Fibonacci representation of the positive integer N. Then we define

(2.11) eN) = F _ +er +Fp 4

k1—1
It is convenient to define
(2.12) e(0) = 0.

In view of the lemma it is immaterial which Fibonacci representation of N
we use in defining e(N). In particular we mayuse the canonical representation
(2.1).

Section 3
Returning to (1.7) we put
* F
(3.1) By = [ @1+ x Dy ny,

n=1
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Then
o0 oo
dxy) = I 0+ XFH+FH+1) = II (1+yanFn+1)
n=i n=2
so that
1+ xy)d&E,xy) =P (y,x) .
Hence

[ee)
(1+xy) Z A(m,n)Xm+nyn = Z A(m,n)y™x" .
m,n=0 m,n=0
Comparison of coefficients yields
(3.2) Am,n) = A@-m,m) + An-m, m-1),

the recurrence stated in the Introductign.

In the next place it is clear from the definition of e(N) that(1.3) reduces

to
0 o9}
(3.3) M@+ oyt = 3 rew 2NN,
n=1 N=0
where R(N) is defined by
o [e 0}
-
(3.9 moaey™) = 30 RNy
n=2 N=0

It follows that
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(3.5) R(N) = Afe(N),N) .

In particular we see that, for fixed n, there is a unique value of m,
namely e(n), such that A(m,n) # O.

If we take m = e(n) in (3.2) we get
(3.6) R(N) = A(N - e(N), e(N)) + A(N - e(N),e(N) - 1)

Now let N have the canonical representation

(3.7) N = Fk1 4 eeo +Fkr

with kr odd. Then

eM) = Fy o+t T

N - e(N) = Fk1_2+ vt Fren -
Since k_ 2 3, it follows that
(3.8) N - e(N) = ele(N)) .
On the other hand, since
Fg+ Fgt+eoe +Fop g = Fot -1,
we have, for kr = 2t+ 1,

eN) -1 = F +"'+Fkr_1+(F3+F5+'”+F2t-1) ;

k1—1

the right member is evidently a Fibonacci representation, so that

i

e(e(N) - 1) © o Fiy -2t Fpt Fyteer +Fopp)

+ oo
Fk1—2

T R P R S R

N-e®™ -1.
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Thus
AN -e(N), eN(-1) = 0

and (3.6) becomes

R(N) Ale(e(N)), e(m)) .

In view of (3.8) we have

(3.9) R(N)

Il

R(e(N)) k . odd) .

Now let kr in the canonical representation of N be even. We shall
show that

(621:—1

(3.10) R(N) = R (Ny)) + (t-1) R(e2t2(Ny) ) ,

where k.= 2t ,
T

(3.11) Ny = Fk.1+'-' + Frpy
and
(3.12) et(N) = e(et’i(N) ), ") = N .

To prove (3.10) we take the canonical representation (3.7) with kr = 2t.
Then

(3.13) eN) = F +oeen +Fkr‘1 ,

k1—1

which is a Fibonacci representation of e(N) except when t = 1. Excluding

this case for the moment, we have as above

(3.14) N - eN) = e(e(N) .

Moreover
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e(N) -1 = Fki"’i oo + Fkr_1_1 + th_1 -1

Fk1—1+"' +Fkr—1'1+ (Fg+ Fytoee +Fopn) ,

ee(N) - 1) = Fkirz toeee +Fp -t (Fy+ Fyteee + Forg)
) = Fk1—2 + oo 4 Fkr—1_2 + th_z ’

so that

(3.15) ele(N) - 1) = ele()) .

Substituting from (3.14) and (3.15) in (3.6) we get
(3.16) R(N) = R(e()) + Re®) - 1) k, =2t > 2) .
When kr = 2, (3.13) gives
N - e(N) = Fk1-2 teee TP 2 = eleNy),
eN) -1 = Fk1-1 teee FFE 1= e(Ny)
Also since
e(N) = Fk1—1+ e P PR 1T Fp

we get

i

ele®) = Fy ,*+" *Fg 2 * Fy

il

N-eN+1.
It therefore follows from (3.5) and (3.6) that
(3.17) R(N) = Re®y)) k, = 2)

in agreement with (3.10).
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Returning to (3.16) we have first

(3.18) R(e(N)) = R(e*(N) (kr = 2t> 2) ,

by (3.9). Since

eN) -1=TF Feee #F ot (Fpt Fydeee + Fapy)

ky-1

it follows by repeated application of (3.17) and (3.9) that

ess R(e(N) - 1) R( ces +Fkr_1_2+F3+....+F2t_3)

Fk1—2 "

= R( 4+ oo +Fkr_1_3+F2+-.. +F2t—4)

Fk1—3
R(Fk1-2t+2 + oee + F.kr_1-2t+2)

R(e*-2 (N;) ) .

I

Thus (3.16) becomes

1l

(3.19) R(N) = R(e2(N)) + R(e?t-2(Ny) ) t>1.
Repeated use of (3.19) gives

R(N) = R(e?-2(N) ) +)t - DR(22(Ny) ) ;

finally, applying (3.17), we get (3.10) .

Combining (3.9) and (3.10) we state the following principal result.

Theorem 1. Let N have the cannonical representation

N = Fk1+.“+Fkr’

where

k. -k > 2 G=1,",r-1); k.2 2.

Then

203
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(3.20) RO = RET0N;) ) + ([$kp] - DRET(0N) )
where
Ny = Fy ot t T
Section 4

Since
Fop+Fy+ree +Fyp = Fotg - 1, Fy+Fg+ o +Fpt1=Fp »
it follows that
.1) e(Fyprs - 1) = Fyp , e(Fpp-1) = Fpp g - 1.
Also since
Fattg - 2 = Fy + Fg+ «oe + Fyt
Fot =2 = Fp+ Fg+ Fg++rv + Ftg
we get
(4.2) e(Fprry - 2) = Fpp-1, e(Fyr-2) = Fop_y-1.

Now by (3.6), for k 2 2,

1l

R(Fy) A(Fg_9, Fg_1) + A(Fg_p, Fg_q - 1)

R(Fk—i) + A(Fk_g, Freq - 1) ,

R(F -1) = A(F, -1-e(F,- 1), e(F, - D +AF, -1-e(F, -1),
e(Fk - 1) - 1).

Then by (4.1),
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A(Fat-g, Fat-1-1) = R(Fat-1-1), A(Fgp-qg, Fog-1) = 0,

so that
(4:.3) R(th) = R(th_l) + R(th_i - 1), R(th_;) = R(th_z) .
In the next place by (4.1) and (4.3)

R(Fpp - 1) = A(Fy_, Fopoq - 1) + A(Fppp, Fotq - 2)

R(FZt—i - 1) ’

R(Fat-1 - 1) = A(Fgt3-1, Foro) * A(Fpp 3 -1, Fapp - 1)

= R(Fyt_g - 1).
Hence we have
(4.4) R(F, - 1) = R(F,_ -1 k=2,
which yields
(4.5) R(Fk -1) =1 k 22) .

Substituting from (4.5) in (4.3), we get
R(Fy) = R(Fpt_q) +1, R(Fag_1) = R(Fyt2) »
which implies

(4.6) R(th) = R(F2t+1) =t t=z1).

We shall now show that R(N) = 1 implies N = Fk - 1. Let N have the

canonical representation

N = Fk1+-.. +Fkr .
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Then by (3.20)

(4.7) R TN ) = 1

and [ky/2] = 1, so that kr = 2 or 3. Since
ekr-i(Nl) = Fki-kr+1 Foee 4 Fkr—i'kr+1 ,

it is necessary that

[G,_ -k, +1/2] =1

and therefore

Similarly
k. - k, = 2 G=1,2,°**, r-2).
Hence we have either

N = Fop + Fopp + o0+ +Fp = Fop+1 -1

or
N = Fop+g+ Fopgt oo +Fg = Fopg - 1.
We may sum up the results just obtained in the following theorems.
Theorem 2. We have
(4.8) R(Fg) = [$4k] k22

Theorem 3. R(N) = 1 if and only if

= - >
N Fk 1, k=1,



1968] FIBONACCI REPRESENTATIONS 207

If we define R'(N) by means of

(o0} i oo N
(4.9) TTa+y ™ = Y Ry ,
n=1 N=0
then
(4.10) R'(N) = R(N) + R(N - 1)

and it follows immediately that
(4.11) R'(Fg) = [k]+1 (k22).
This result has been proved by Hoggatt and Basin [4].
Further results like (4.5) and (4.8) can be obtained by the same method.
For example we can show that
R(Fat1 - 2) = 1+ R(Fat - 2) t> 1,
R(Fot - 2) = R(Fg_q1 - 2) t>1) .
It follows that
(4.12) R(F
Consequently by (4.11) we have
(4.13) R(F -1 = [dk+D],
a result proved by Klarner [5, Th. 1].

Section 5

Theorem 1 furnishes a reduction formula by means of which R(N) can

be computed by arbitrary N. For example if
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(5.1) ' N=FJ.+F G-k=22, k-22)

k

that by (3.20)

R(N)

Il

REE) + (3] - DREHE))

= R(F, ).

j-k+1

)+ (Fk]- DRI, L,

Applying (4.8) we get
(5.2) RIN) = [$G-k+D]+ (3k]-D[3(G -k +2)] .
Again if

(5.3) N = F+F+F i-j22,j-k22, k=2),

k

then

= 1 -
R(N) = R(F, ., Fj—k+1) +([2k] - DRF, |, + Fj—k+2) .

Applying (5.2) we get

(5.4) RON) = [$G-i+D]+(3G-k+D]-1)[3G-j+2)]
+(4k] - D{[3G -3+ D]+ G[i-k+2] -D[EG-j+2].
Unfortunately, for general N the finalresult is very complicated. How-

ever (5.2) and (5.4) contain numerous special cases of interest.
In the first place, taking k = 2, 3, 4 in (5.2), we get

(5.5) R(Fj +1) = [§G-1)] G=4)

(5.6) R(F; + 2) = [§G-2] G205

(5.7) R(F, + 3) =[3G-3]+[4G-2]1G=6).
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In the next place for the Lucas number Lk defined by
Lg = 2, Ly =1, Ly = Lig+ Ly k2 1),
since L, =F , +F_ (56.2) gives
R(Lg) = 1+2[3k-3] (k=3).
Hence
R(Lggty) = 2k - 1 k > 1)
(5.8)
R(Lyk) = 2k - 3 k> 1).
Since
2P = P P Py 0 3P T ey TP,
we get
(5.9) R@Fk) = 2 +2[ k-4)] k=24,
(5.10) REBF) =2 +3fk-4] k=24).

The identity

Loj Fit = Froni ¥ Flyj
yields
(5.11) R(IpjFk) = 2§+ @i+ D([4k] -j-1) (=2j+2);
for j = 1, (5.11) reduces to (5.10).

A few applications of (5.4) may be noted. For k = 2 we have

(5.12)

209

R(F;+Fj+2) = [§A-j+1)] +[$G-3[I0-j+2)]0-j=2,j 2 4).
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while for k = 3 we have
(5.13) R(F1+Fj +2) = [§G-j+D] + [3G-D][$GE-i+D]E=252> 2, j2 5).

Again, since

k k+ k k-2
it follows that
(5.14) R@4F) = 1+3[fk-4] k=24).
Section 6

As remarked above, direct application of Theorem 1 leads to very com-
plicated results for R(N). If, however, all the ks in the canonical repre-
sentation of N have the same parity simpler results can be obtained. If all
the ks are odd then by (3.9) ,

(6.1) R(Fk1+--- +Fkr) = R( + see +Fk

Fkl—i r"i) ’
we may therefore assume that all the kS are even.

It will be convenient to introduce the following notation. Put

(6.2) N = Faky + 0 + Fog, >

where

(6.3) ky > kg > eee > kp2 13

also put

(6.4) js:ks'ks—1 s=1, ", r-1); jr=kr

and
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(6.5) £, = Gy +++5 jp) = RO ,

where N is defined by (6.2).
Now by (3.20) and (3.9)

RMN) = R(Falyaky, + *** + Fak, g-ok) + kp - DR(Fok ok +2

+ oee + szr—i_zkr+2) o

By (6.4) and (6.5) this reduces to

(6-6) f(j1s crtey Jr) = f(ji’ ety jI'—l)

+(jr"1)f(j1: "‘:j _9? J _ +2)'

By (3.19) we have

R(Fok,-ak+2 * * o + Foky_j-aky+e)

= R(Faky-akyp * 00+ Fokp_g-2kp) + RFokyoky_gro oo+ Fogy oookp_+2)

so that

f(ji, cev, jrag, jr—l +2) = f(jj_s o, jr—i) + f(jls cery -3 jr-2t 2)

f(j1s°°'=jr—1) +f(j1»°”sjr—2) Foeee +f(j1) +1.

Thus (6.6) reduces to

6.7) I +(jr—1)(fr_2+--«+f1+1).
If we define

(6.8) Sr=fr+fr_1+”'+f1+1, 80:1 )

then (6.7) becomes
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fo-f =G-8, @22

and therefore

- (3 = >
(6.9) S, - (,+Ds,_ +8 =0 @22).

We may now state
Theorem 4. With the notation (6.2), (6.3), (6.4), (6.5), fr = R(N) is
determined by means of (6.9) with S5 = 1, 83 = j3+1 and

The first few values of Sr are given by
So =1, 83 =j1+t1, S =jgjat i1tz Sy = juholst jue*itis Tids - 1.
It is evident that Sr = S+ jr) is a polynomial in jg,*++,jr; indeed it is

a continuant [ 1, vol. 2, p. 494].

We have for example

i+ 1 -1 0 - 0
-1 g+l -1 ees 0

8, = 0 1 ggt 1l ees 0
0 0 0 i1

and
Sr(jl’jz’ cre, jp) = S(jr’ Jp-1 s j1) .

The latter formula implies

(6.10) R(Fgg, *+0* + Fak,) = R(Fg)+oer + Fokl)



1968] FIBONACCI REPRESENTATIONS 213
where

ki = kp, Ky = ky-kyp, ki = kj-kp g, v, kb = ky - ky.
When
(6.11) Ji = JZ = eses = jr = J ,

we can obtain a simple explicit formula for Sr‘ Since in this case

- {3 = > = E—
S,-(G+D1S,  +8, ,=0 (r2 2), So =1, 84 =j+1,
we find that
oo - o0
P R R e e i R T
=0 8=0
o0 oo
- +
- Z : 2:(_1)1: (St) G+ 1SS
s=0 t=0
~which gives
oo
- « -2
(6.12) S, = Z 1t (rt t)(J+ n*t
2<r

In particular, for j = 1, (6.12) reduces to

(6.13) sr =r+1 G=1 .

(6.14:) Jl = s =— jr_1 = j, jr = k .
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Then Si,+++,Sp_y are given by (6.12) while

(6.15) S, = k+1S,_ -8,
where S'r = S@,+**,j, kk It follows from (6.15) that
(6.186) fl. = fG,ee,jk) = ks, -8
In view of the identity
Loj+1 Fok = Fogroj + Fogtoj—2 *°*° +Fakooj
we get, using (6.13) and (6.16),
6.17) R(Lpj11Fok) = k-)@j+1)-2j k=>7j.
For k = j we have
(6.18) R(Lpj41Fpj) = 1 .
Note that
Loj1 Foj = Fgjra - 1, ILpj-1Faj = Fyjq-1.

When j = 2, we have

© o
E S xr+1 = 2= = E Fann s
_ 2
=0 1-3x+x =0
so that
(6.19) SI‘ = Fopts .

We now recall the identities
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Fy+ Fg e +Fgp = Fipu -1 @2 1),
Fy + Fg+ eov + Fppp = Fiy n=z1),
Fg + Fg+er + Fypog = FopFopy @2 1),
Fy+ Fg+re +Fapg = FopFonpey @2 1)

It follows readily, using (6.16) and (6.19) that

(6.20) R(Fipt1 - 1) = Fopig @ 20),
6.21) R(Fin) = Fon_y n 21,
(6.22) R(FopFon+1) = Fang n 21),
(6.23) R(FpFon-i) = Fan_y m=1).
(6.24) R(Fipq - 2) = Fyp h21,
(6.25) R(Fé, - 1) = Fyp 21,
(6.26) R(FopFop+1 - 1) = Fyp @=1),
(6.27) R(FynFon_g - 1) = Fan-g .

Combining (6.20) with (6.24), and so on, we get

(6.28) R'(Fan_q - 1) = Ty m>1),
(6.29) R'(F3n) = Fon+ =0,
(6.30) R'(FonFon+1) = Fonvg = @2 0),
6.31) R'(FonFon-1) = 2Fyn-4 m=1).
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We have also

(6.32) R(Fiy - 2) = Fon_y 21,
(6.33) R(Fin+1) = Fanoi nh21),
so that

(6.34) R'(Fin - 1) = Loy =1,

(6.35) R'(Fin+1) = Lop = 0).

Several of these results were obtained in [4].

In a similar way one can also prove the following formulas.

(6.36) R(FanFam) = R(Fopt+1Fam) = (0 - m) Fom + Fomy
(6.37) R(Fon Fam+1) = R(Fan+1Fam+1) = (- m) Fapy
Section 7

We shall now prove

Theorem 5. Let N have the canonical representation

(7.1) N = F +o+ +F .

ky

Then e(N + 1) = e(N) if and only if kr = 2.
Proof. Take kr = 2. Then

= LICINY +
N+1=T +: +Fg,  +Fy,

so that

eN+1) = Fk1_1+"- +Fp, 1t Fae

Since

[Oct.

(n=m),

> m).
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e(N) = Fees +Fkr—1"1+F1’

Fk1—1

it follows that e(N + 1) = e(N).
Now take kr > 2. Then

N+1=F +eee Tl + Ty

and

e(N+1) = Fk1—1+'.. +Fkr_1+1 .

But

e(N) = Fkr .

This completes the proof of the theorem.
If N is defined by (7.1) then

M = Fk1+1 +oeee o+ Fkr—lrl

+oee +Fkr-1< eN +1) .
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satisfies e(M) = N. Moreover, by the last theorem, if kr = 2 then also

e(M-1) = N.
Consider
N +1 = Fk1+1+=-' +Fkr+1 + Fz.
Clearly

e(M+1) = F_+*** +F +1=N+1.

ky

Also, since F3 = 2, we have

M-2=F FF,  *t L

+ e
kyt

oM -2) = P+t 4T = N-1.
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It follows that one can have at most two consecutive numbers N, N +1,
such that e(N) = e(N + 1). This justifies the assertion about A(m,n) in the

introduction.

Section 8
Put
F=a~8n’ UL VPN L V]
n a - f 2
Then it is easily verified that
(8.1) N

Hence if N has the canonical representation
N = Fk1+"' +Fkr9
it follows that
(8.2) eN) - a1 N = g5t 4 gle Ly pkr

Consequently

e(N) - a‘1N1 < oMy Re ok

< a—2+a—4+... +Q-21’

-2
<9 L1 _1cgea.
1-a2 a? -1 o
If we put
a-IN = [o-IN] + € 0<E< 1,

where [a~IN] denotes the greatest integer <a-IN, then
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-0.62 <e(N) - [IN] - € <0.62.
This implies
(8.3) [@7IN] < e(N) S [a~IN]+ 1 .

If kr 2 3 it follows from (8.2) that

ie(N) - oz‘lNi Sad + @b 4201
< ad 1 - 11
1 - a2 ale? - 1) o? 2

and therefore
(8.4) eN) = {a"IN} k. > 2),

where {a/-lN} denotes the integer nearest to o~ IN .
Thus the value of e(N) is determined by (8.4) except possibly when kr :

= 2. Now when kr = 2 we have as above

a-5
,,.e(N)_a—lN_Z a-—z_a,—5_a,—7__,.. _a—2r~1>a—2 _
1-a2
_1 1 111,
o e -1) ot ot od
so that

0 <e(N) -aIN < 0.62.

It therefore follows that

(8.5) e(N) = [e”IN] + 1 k= 2).

We may now state
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Theorem 6. Let N have the canonical representation

N o= By b £ T

Then if kr > 2,

(8.6) eN) = {oIN},

the integer nearest o IN; if k.= 2,

(8.7) e(N) = [e-IN] + 1 .

We remark that (8.6) and (8.7) overlap. For example for

N =6 = F;+TFy, e6) = Fg +Fy = 4, [6a"1] = [3.72] = 3,
{6a~t} = {3.72} = 4.

However for

N =25 = Fg+ Fy + Fy, e(25) = Fy + F3 + Fy =16, [250-1] = 15,
{250-1} = 15 ,
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