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INTRODUCTION 

Suppose ( a } i s a sequence of na tura l number s such that a = a + 
a , n = 1, 2, • • • , and le t A(n) be the number of se t s of numbers {i1 ? i2, • • •} 

such that n = a,- + aj + • • • . When a = F , F , j o r L (where a s usual 1l 12 , n n n+i n 
F and L a r e the n Fibonacci and Lucas n u m b e r s , respect ively) we wr i t e 

A(n) = R(n)9 T(n), o r S(n), respec t ive ly . Among other tilings we proved 

the following t heo rems in an e a r l i e r paper on this subject [ 4 ] . 

T h e o r e m 1. If a < K = a + k a ,, - a2? n = 3, 4, * • a , then — — n n n+i * 

(a) A(K) = A(k) + A(a n _ i - k - a2) , 

and 

(b) A(K) = A(a n + 1 - k - a 2 ) 

Also, if a2 ^ 2 and 1 ^ k < a2 - 1, then 

(c) A(a n _ i + k - a2) = A(an - k) = A ( a n + i + k - a2) , n = 4, 5, 

T h e o r e m 2: 

(a) T(N) = 1 if, and only if, N = F - 1, n = 0, 1 , ' • • . 

(b) T(N) = 2 if, and only if, N = F n + 3 + F n - 1 o r F n + 4 - F n - 1, 
n = l , 2 , - » 

(c) T(N) = 3, if and only if, N = F n + g + F Q - 1, F n + g + F n + i - 1, 

V e ^ n " 1 ' o r F n + e ~ F n + i " ^ n = 1. 2, • • • . 

* T h i s p a p e r was wr i t ten while the author was a pos tdoc to ra l fellow at McMaste r 
University, Hamilton, Ontario, 1967. ( R e c e l y e d J u l y > 1 % ? ) 
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(d) T ( F n + k + 2 + 2 F n + 2 - 1) = k, n = 1, 2, • • • , and k = 4, 5, • • - . 

F o r s eve ra l values of k Hoggatt found solution se t s of T(x) = k; in 
each case this solution se t could be desc r ibed as a finite set of sequences hav-
ing the form b - 1 where b , = b , + b . Thus he was led to conjecture: 

& n n+2 n+i n J 

If ( b } i s a sequence of na tu ra l n u m b e r s such that b ,n = b , + b , then 1 nJ ^ n+2 n+l n 

T(b - 1) = T(b _,_ - 1) = k n n+l 

for al l sufficiently l a rge n. Our main purpose in this note i s to give proof of 

Hoggatt !s conjecture . 

A REPRESENTATION THEOREM 

Suppose • • • , F _ l s F 0 , F j , • • • i s the extended sequence of Fibonacci 

e r s ; that 

Thus , we have 

m e m b e r s ; that i s , F 0 = 0, F* = 1, and F , - F - F = 0, -oo^ n < oo u » i n + 1 n n_t 

F - n = ( - 1 > n + l F n ' n = 1 ' 2 ' " ' ' 

The following represen ta t ion theorem should be compared with Z e c k e n d o r f s 

theorem (see for example Brown [ 1 ] , [ 2 ], o r Daykin [ 3 ]); in pa r t i cu l a r , i s 

the re a sequence essen t ia l ly different from \ F } which sa t i s f ies the conditions 

of T h e o r e m 3? 

T h e o r e m 3. F o r every pa i r of non-negat ive in tege r s A and B the re 

ex i s t s a unique set of in tegers ( k j , • • • , kj} such that | k r - k s | > 2 whenever 

r f s, and 

A = F k j + • • • + F k . and B = F ^ + - + F k . + 1 . 

Proof. If a set of in tegers {mt, • • • , m.} has | m - m l ^ 2 when-

eve r r f s, F + . . . + F i S called a min imal sum. T h e r e is a finite 

a lgor i thm h, for convert ing F + F + . . . + F m . into a min imal sum if 

F + • • • + F™. i s a min imal sum &: F i r s t , if m = m. for some j we can m i m i J 
conver t F + . . . + 2 F W . + • • • + F ^ . into a sum involving FTs with d i s -

m j m ] m i 
t inct subsc r ip t s s ince there i s a max imal t such that 2F + F + • • • + ^ m m-2 
F , i s a p a r t of this sum, and this can be replaced with 
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F + F + . . . + F + p 
m+i m - i m-2t+i m-2t-2 

Second, if F ^ + F ^ + • • • + F m . i s a sum involving F f s with d is t inc t s u b -

s c r i p t s , a min imal sum can be obtained in a finite number of s t eps by s u c c e s -

sively replac ing F + F , v maximal , with F . Note that if & i s applied 
t o F„+™ + • • • + F M and F , + • • • + F + n. i s the r e s u l t when n = 0, 

n+mj n+mA n+n* n j ' 
then tne s a m e s ta tement holds for n = 1, 2, • • • . 

Cons ider the sequence {b } defined by 

b 0 = A, bi = B, b ^ = b _ + b , n = 0 , 1 , • • • , u i n + 2 n + 1 n J J ? J 

then i t follows that 

b = F A + F B, n = 0, 1,'" . n n - i n 

Using the a lgor i thm 2\ we a r e going to show by induction on A + B that for 

eve ry p a i r of non-negat ive in t ege r s A, B the re ex is t s a unique se t of i n t ege r s 

{kj , • ' ' , k j such that Ik - k I > 2 when r f s, and 
1 r SI 

(1) AF 4 + BF = F J_. + • • • + F Ml , n = 0, 1, • • • . 
n - i n n+k* n+k-

If A + B = 1, then 

AF + BF n - i n 

i s F _ o r F , n = 0 , 1 , • • • . Suppose the s ta tement i s t rue for eve ry p a i r 

of non-negat ive in tegers A, B with A + B ^ n (n ^ 1). Then if A + B = n, 

the re ex is t s a unique se t of in tegers {k1? • • • , kj} with Ik - k I > 2 when 

r f s, and 

AF + BF = F ^ + • • • + F _,_, . n - i n n+ki n+ki 

Now we can apply E to 

( A + 1 ) F + BF = F + F ,. + • • • + F . n - i n n - i n+ki n + k i 
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o r 

AF + (B + 1)F = F + F _,_. + • • • + F ,. n - i n n n+kj n+kj 

to find that t he re i s a t l e a s t one se t of in tege r s which sa t i s f ies (1) for every 

p a i r of non-negat ive in t ege r s A,B with A + B =• n + 1. But suppose AF 

+ BF can be expressed as a min imal sum in two ways for n = 0 , 1 , • • • , say 

AF + B F = F ^ + . . . + F _ L = F _ L +••• + F _,_ . n - i n n+r i n+rj n+s* n+sj 

Thus , for every 

n -̂  max \ r l s , r i 5 s ^ • • • , s j } 

the number AF _ + BF has two rep resen ta t ions a s a sum of non-consecut ive 

Fibonacci n u m b e r s (with posi t ive subscr ip ts ) ; this con t rad ic t s Zeckendorf ' s 

theorem which says that such r ep resen ta t ions a r e unique for every na tu ra l 

number . 

Coro l l a ry : If {b } i s a sequence of na tu ra l number s such that 

• *> ^ = b ,, + b , n = 0, 1, • • • , 
n+2 n+i n 

then the re ex i s t s a unique se t of i n t ege r s {kj , * • *, kj} with k - kc 

r fi s, such that 

> 2 when 

(2) b = F ^ + • • • + F _,, , n = 0 , V . 
n n+kj n+kj 

Proof. Put bo = A, bi = B in Theorem 3, then (2) can be proved by 

induction on n. 

HOGGATT'S CONJECTURE 

Theorem 4. Suppose { b } i s a sequence of na tu ra l number s such that 

b , = b . + b , then the re ex i s t s an N such that n+2 n+l n 

(3) T(.b - 1) = T(b ^ - 1), n > N; 
n n+i 
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in fact, if 

( 4 ) b n = F n + k l
 + - " + F n + k i ' k j ^ k

j + l + 2> J = V » . i - l . . 

then N = 2 - k.. If k. > 2, the extended sequence found by subst i tut ing n = 

- 1 , • • • , 2 - kj in (4) sa t i s f ies (3) for n > 2 - kis 

Proof. The Coro l l a ry to Theo rem 3 guaran tees that b has the (unique) 

r ep resen ta t ion given in (4), so we can a s s u m e b has this form. If i = 1, 

Theorem 2(a) a s s e r t s T(F - 1) = 1 for n = 1,2, • • • , so 

T(F M, - 1) = T(F _ul '- 1 ) 
n+ki n+ki+i 

for n > 2 - ki (in fact for n -̂  1 - kj )• Now a s s u m e i > 1, We have 

F ^ < b - 1 < F ^ _,, - F 3 , n+kj n n+ki+l 6 

for n ^ 3 - ki ^ 2 - k., so Theorem 1(a) can be used to wr i t e 

(5) T(b - 1) = T(b - F ^ - 1) + T(F ,. , - b + 1 - F3) n n n+ki n+ki+i - n ° 

Suppose 1 < j < i i s the s ma l l e s t m e m b e r such that k. > k. + 2, then 

(6) F ^ ^ . , - b„ + 1 - F 3 

F ^ - 1, if j = i , n+ki-i J 

n + k l + 1 n F +I + F , . + . . . + F + . - 1, if j < 1. 
1 n+kj-2 n+kj+t n+kj J 

Now (5) and (6) indicate that Theo rem 4 can be proved by m e a n s of a 

double induction on i and kt - k2 = k > 2; thus, for i, k ^ 2 we define 

proposi t ion P ( i , k ) : If {b } i s a sequence of na tu ra l number s with 

b = F ,. + • • • + F ,. , n n+ki n+kj * 

such that k t >: k2 + 2, ° ° % ki_i ^ ki + 2, . and kA - k2 = k, then 
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T(b - 1) = T(h ' - 1) n n+i 

for a l l n 2 2 - k.. 
I 

To prove P(2,2) Is t r u e , suppose 

b = F ^ + F ,. n n+ki n+k2 

with k2 = ki - 2; then using (5) and (6) we have 

(7) T(F ,. + F ^ - 1) = T(F ^ - 1) + T(F ^ j - 1) , 
n+ki n+k2 n+k2 n+k2-i 

but 

T ( F n + k 2 - » = T O ^ - 1) = 1 

for al l n > 2 - k2 . 

Suppose P(2,k) i s t rue for a l l k < K (K > 2), and suppose 

n n+ki n+k2 

with ki - k2 = K, then using (5) and (6) we have 

(8) T(F _,. + F ^ - 1) = T(F ^ - 1) + T(F ^ + F ,. - 1) . 
n+ki n + k 2

 n + k 2 n+ki-2 n+k2 

If 

K = 3, T(F _,, - 1) = T(F _,, + F M - 1) = T(F ., ^ - D = 1 , ' n+k2 n+ki-2 n+k2 n+ki+i 

for a l l n -^ 2 - k2, If K > 3, 

T(F _,, + F j , - 1) = T(F _,. ^ + F _,. • - 1) for a l l n > 2 - k2 , n+ki-2 n+k2 n+ki+i n+k2+l L 
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so P(2,k) is true; thus, P(2,k) is true for all k ^ 2. 
Now we suppose P(i,k) is true for all i < I (I > 2) and all k > 2; 

there is no difficulty in showing that P(I, 2) is true and that P(I,K - 1) im-
plies P(I,K) for K > 2, by using (5) and (6) just as before,, This completes 
the prooL 

Corollary: 

T(F ^ + F - 1) = n+k n 
k + 2 , k,n = 2 , 3 , ' 

Proof: Combining (7) and (8) and related results we have 

( 2, if k = 29 3, 
(9) T(F + F - 1) = 

n K n l + T t F ^ + F - 1 ) , i f k = 4,5,-1 n+k-2 n 

The proof follows by induction on k in (9). 
Theorem 5. Suppose ( b } is a sequence of natural numbers such that 

b . = b , + b , n+2 n+i n 

then T(b ), T(b + ), • • • , and R(b ), R(bn+ ) , 8 8 0 form arithmetic pro-
gressions for all sufficiently large n, 

Proof. The proof that T(b ), T(b + 2 L " ° forms an arithmetic pro-
gression follows the proof of Theorem 4, except that we use the fact that a 
term-by-term sum of two arithmetic progressions is also an arithmetic pro-
gression, Theorem 4 and this last result imply R(b ), R(bn + 2) , e o° forms 
an arithmetic progression because R(N) = T(N) + T(N - 1), so R(b ) + 
T(b - 1). n 

SOLVING T(x) = j 

In the last section we showed that T(x) = T(y) for every pair 
x,y€= S(k l f - - - ,k i ) = { F n + k i + --- + F

n + k . - I m = 2-k l 9 3 - klf • • •} , 
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where 

k i ^ k2 + 2, ••••, ki_t ^ k i + 2 ; 

since 

S(ki ,--«,ki) = S(ki + k , - - . , k i + k)f 

we will assume k. = 0. The next theorem asserts that every solution x of 
T(x) = j is contained in one of a finite collection of sets S(ki, • • • , k [ ) for 
appropriate sets of numbers {ki, • • • , ki} . 

Theorem 6. (a) Every non-negative integer is contained in exactly one 
of the sets S(ki, • • • , lq), where {k^ • • • , kj} ranges over all sets of integers 
such that 

ki > k2 + 2, • • • , k j . ^ ki + 2, ki = 0 

'(b)- If x ,y S(ki, ••• ,44), then 

"ki + 2 
T(x) = T(y) < 

(c) There exists a finite, non-empty collection of sets S(rj, • • • , r m ) , S(si, 
• • • » s m ) , * « - such that T(x) = 3 if, and only if, x E S(ri, • • • , % ) U S (sl9 

s n ) U • • • . 
Proof, (a) This is a reformulation of Zeckendorf's Theorem, (b) The 

result is true when i = 1 or 2 by Theorem 2(a) and the Corollary to Theorem 
4, respectively. Now (5) and (6) can be used to prove (b) by induction; the 
main point of the proof is indicated by She following inequality: 

(10) T(F M + • • • + F ^ - 1) = T(F ^ : + • • • + F _,, - 1) n+kj n+Iq n+k2 n+kt 
+ T(F ,. + ••• + F ,. - 1) n+k.-2 n+ki 

.1 3 x 

> 1. 
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(c) Every number is in exactly one of the sets S(ki, • • • , kj) by (a) of this 
Theorem; but x E S = (x:T(x) = j} and x E S(kl9 • • • ,ki) implies S(k1? - ••• , 
kj) is contained in S since T(x) = T(y) = j for every yE S(k4, • • • J k i ) by 
Theorem 4. There are only finitely many sets {ki, • • •, k[} such that 

ki £ k2 + 2, • • • , ki„! ^ ki + 2, kj =' 0, 

and 

ki + 2 
^ j 

so S. is a finite union of sets S(rj, • • • , r m ) , S(sj, • • •, s n ) , • • • . The c o r -
ollary of Theorem 4 implies S. is non-empty for j = 1, 2, • • •; a different 
collection of solutions of T(x) = j was given in [4 ] • 

Let t(kij«»°?ki) = T(x), where x E S(ki, • • • ,ki) ; then if i = 19 we 
have t(0) = 1 which is Theorem 2(a). For i > 1, if j is the smallestnum-
ber such that k. > k. + 2, then (5) and (6) may be formulated as 

(11) t(klf • • • , ki) 

t(k2, , ki) + l, if j = i 

t(k2 + • • • + ki) + t(kj - l,kj+2, • • • ,ki) 
if j < i, k. = k. , , + 3 , 

t(k2 + ••• +k i ) + t(k. - 2 , k . + 1 , - - 5 k i ) 
if j < i, k. > k . ^ + 4 . 

Using Theorem 6(b) and (11) we can find all solutions of T(x) = j with a 
finite amount of checking. This checking would be made easier if we had a 
non-iterative method for computing t(kl9 • • • , kj), but so far we have not been 
able to find a closed formula for t(kl9 • • •, kj) . 
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• * • * * 

MORE ABOUT THE ^GOLDEN RATIO" IN THE WORLD OF ATOMS 

J . WLODARSKI 
Porz-Wesrhoven, Federal Republic of Germany 

In an earlier article (The Fibonacci Quarterly, Issue 4, 1963) the author 
reported some fundamental asymmetries that appear in the world of atoms. 

It has been stated in this article that the numerical values of all these 
asymmetries approximately are equal to the ^'golden ratio" ("g. r.fT). 

Two of these asymmetries were found: 
lo In the structure of atomic nuclei of protons and neutrons, and 
2. In the distribution of nucleons in fission-fragments of the heaviest 

nuclei appearing in some nuclear reactions. 
Recent theoretical studies suggest that an element containing 114 protons 

and 184 neutrons may be comparilively stable and therefore this hypothetical 
substance could be produced possibly in some nuclear reactions [1]. 

One possible reaction involves bombarding element 92 (uranium) with ions 
(atoms stripped of one or more electrons) of the same element 92, which should 
yield a hypothetical compound nucleus i84[x]476 that could break up asymmetri-
cally and produce a nucleus with 114 protons: 

92U238 + 9 2U2 3 8->1 8 4 [x;F-->1 1 4 [yp + 70Yb16s + 12n; 
12 neutrons (n) would be left over from the reaction [2]. 

Remark: Both hypothetical (with no names) products of this reaction are 
designated with the symbols [x] and [y] respectively. 

It turns out that the ratio of 114 protons and 184 (298 - 144 = 184) neu-
trons of the hypothetical element 114 is equal to 0.6195 and differs from the 
"g. r. "-value (if we limit the Tfg. r. "-value to four decimals behind the point) by 
0.0015 only. 
[Continued on p. 249, ] 


