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1. INTRODUCTION .

In this paper we discuss the problem of representing uniquely each real
number in the interval (0,c], where c is any positive real number, as an
infinite series of terms selected from a sequence (bn) of real numbers. We
choose an integer k = 1 and require that any two terms of (bn) whose suf-
fices differ by less than k shall not both be used in the representation of any
given real number. The precise definitions ard results are given in the next
section.

In an earlier paper [2] we discussedan analogous problem of represent-

ing the integers in arbitrary infinite intervals,

2. STATEMENT OF RESULTS

Throughout this paper k =1 is an integer. Also the subscript of the
initial term of any sequence is the number 1; e.g., (cn) = (cg,C9,°°° ).

In order to prove our main result, which is theorem 2, we need a result
which we give in a slightly generalized form as Theorem 1. Let (cn) be a

sequence of positive real numbers which obey the linear recurrence relation
(2.1) aiCptk + aCn+k-1 + e Fagent1-c =0

for n =1, where ay,¢¢°,a2g are non-negative real numbers independent of
n, and a; = 0. The auxiliary polynomial g(z) of this recurrence relation is
given by

glz) = aizk + agzk-14 e taz - 1.

It is clear that g(z) has just one positive real root p, and that this root is

simple.
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Theorem 1. If the sequence (cn) is strictly decreasing, and p is
smaller than the modulus of any other root of g(z), then p <1 and e, = Apn
for n =1, where A is a positive real constant.

We now define a k-series base for the interval of real numbers (0,c],
where c is any positive real constant. This is analogous to the concept of an
(h,k) base for the set of integers as an interval; this concept was given in the
earlier paper [2].

Definition. A sequence (bn) of real numbers is a k-series base for

(0,c] if each real number r € (0,c] has a unique representation
(2.2) T =b, +h +eee |

where

for v=1, and further, every such series converges to a sum r € (0,c].

It is clear that the polynomial £(z) = zk +z ~ 1 has just one positive
real root 0, that 0 is a simple root, and that 6 <1. Let R be a real num-
ber. We now enunciate our main result.

Theorem 2. Let (b_) be a sequence of real numbers such that bnz

n

bn+1 >0 for n =1. Then (bn) isa k-series base for (O,QR] if and only

if

_ pRin
bn—G

for n = 1.

It is not true that all k-series bases are decreasing. For instance,
when k = 2, the series (1,2,0,6%+++) is a k-series base for (0,2+6]
However, A. Oppenheim has shown that if the sequence (bn) is a k-series
base for (0,c] for some ¢ > 0, and if N is an integer such that bn = bn H
= 0 for n = N then bn = A" for n > k, where A is somepositive con-
stant, It is not known if all k-series bases (for k = 2) are ultimately
decreasing.

1t follows from Theorem 2 that the sequence
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(2.3) (9_N+1, 6“N+2,""V96_19 903 919"')

is a k-series base for (O,G_N], where N is any positive integer. Hence if
r is any positive real number, and L and M are positive integers such that
both 6 ~¢ and ™M > r, thenthe k-series representation of r interms
of the sequence (2.3) with N = L is the same as with N=M. For shoriness,
therefore, we can refer to this as the '6-representation' of r. Then, if an
initial minus sign is used in representing negative numbers, we can give a
unique 'O-representation' for any real number. A 'O-representation' of real
numbers is akin to decimal representation, but is much more closely related
to binary representation since when k = 1 the 'O-representation' and the
binary representation of the same real number are the same (for when k = 1,
6 =1

A further observation is that any sum T of a finite number of terms of

+
R 1’9R+2,.”)’

the sequence (@ where R is any real number, in the form

i i i i1
T = 01+02+.00 +0% 0%

where iV_H = iv +k for 1 = v <o, canbe written in the form

T=E ol |

V=i

where i, b = i,+k for v=1, simply by putting

o0

2.4) gia‘i =§ :gia"""k ,

v=i

(The relation (2.4) follows from the relations
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and

e‘ia—1+nk - eia+nk + eia-1+(n+1)k
for n = 0, both of which are very easily proved.) This fact is analogous to
the decimal equation 1 = 0.9 or the binary equation 1 = 0.1,

3. PROOF OF THEOREM 1

We first prove Lemma 1, an equivalent form of which occurred originally
in [3] and was also quoted in [4].

Lemma 1. If ay,ap,c¢- 2»0p are real numbers then there exists an in-
creasing sequence (nj) of positive integers such that

exp (injafi) —>1, exp (i_njozz)—el, ceo @xp (injap)—él as j—>oo,

Proof. For x a real number, let ¥ be the number differing from x by
a multiple of 27 such that -w =X =7. We prove the lemma by showing that
if we are given any positive real number € > 0, and any positive ‘integer N,
then we find an integer n = N such that

no | < € for 1=s=rp

Let M be the region in p-dimensional space in which each coordinate ranges
from -7 to 7r. Let the range of each coordinate be divided into m equal
parts, where

2
€

m =

is an integer. Then M is divided into mP equal parts. Consider now the

mP +1 points

(Nvay, Nvaz,'“,Nvozp) for 1 =v =mP.

One part of M must contain two of these points; let the corresponding indices

be vy and v;. Then clearly

NZV]_ - Va ;C’Z;

27

<

& mn
<€
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for 1 =s =p, and
i vy - vzl =1,
We put
n = Ny - »| ;

this proves Lemma 1.
Since (cn) obeys the recurrence relation (2.1), c, can be expressed

in the form
u Vs
- z : E : n
(3.1) c, = ntBst £s for n =1 ,
s=1 t=0 .

where the numbers £ are the distinct roots of g(z), the number (v  +1) is

the multiplicity of the root {s for 1 =s =u, andthe numbers BS are suit-

t
able complex constants. Let = £,. We consider two cases.

Case 1. B, =0 when (s,t) # (s',0). Then by (3.1),

(3.2) c =B_,p  for n=1.,

a positive constant, Since (cn) is a decreasing sequence, p < 1. Hence the
theorem is true in this case.

Case 2. B, # 0 for at least one pair (s,t) # (s',0). This implies that
k = 2, We shall deduce a contradiction. By rearranging the terms in (3.1) if
necessary, there is a number p where 1 =<=p =u, and a number g, where
0 =g = min (vj, Vg, ,vp) such that
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(i) For 1 =s =p, Bsq% 0, |§S|=i§1| and By, =0 for g =t =
Vg
(ii) for p <s =u, if lfsl=|§1|then By
if |§S|> |é1| then B, = 0 for 0=t =v_

. s
Then by (3.1)

t=0 for q <t =V and

p
= g,n

(3.3 c, E Bog® &, * R,

s=1
where R is the sum of a finite number of non-zero terms of the form Cnyf §9
where C is a complex constant and either |§5| = l’fil and ¥ <gq, or ’fﬁ, -
‘ﬁi Our assumption implies that either
(3.4) |&l =p or q=>0.
1t Igﬁl < |&] then Y|és| "/1¢4]" >0 as n->co. Hence

(3.5) R/|§1|nnq >0 as n-> .

< = i
For 1 =s =p, let fs r exp G ozs), where ry and a  are the

modulus and argument of fs respectively. Then by (3.5) and (3.4) respectively,

(3.6) E’»/rlil n? >0 as n>w
and either
(3.7) ry >p or q>0.

Further, let w be the smallest positive integer such that when n = w, En #

0, where

p

En = E Bsqexp (lms)" for n=1.

=1
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The number w exists, for otherwise BSq =0 for 1 <s< p. From (3.3)
and (3.6)

S . i . itn -
ha BSq exp (1wozs) exp (i w)as) +0(1) as n-> oo
s=1

By Lemma 1 there exists a sequence (nj) of positive integers such that

C
n.

(3.8) —nJ— = E,+01) as j>».
r1] nd
J
It is clear from (3.8) that EW is real and positive; since (cn) is a decreasing
sequence, we have also that ry < 1 and hence p < 1.
By (3.7) and (3.8) there exists an integer m such that

C C r m (¢
JE P P

Hence,

Ci Cy Ci
m-k+i m-k+2 m
(3.9) Cm-k+ z cm—k+2> > > (?)p 2 (F) p > o> (7) P

Therefore,

Cq -1
(3.10) Crok ~ #Cm tagem-oytecc e o > (—’3-) (a,pm +a, pm +

- 1 -
koot m k+1) - (_E_>pm k .

Using (3.9) and (3.10) we find in a similar way that
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1\ m-k-q
k-1~ (_ﬁ_)p

Cy
m-k-2
cm—k—z> < >p

and

LRE Y

and so on, until

Ci
¢y 2> "p—p,

a contradiction. Hence Case 2 does nof occur. This proves Theorem 1.

4., PROOF OF THEOREM 2

The sequence (bn) is clearly a k-series base for (O,GR] if and only
if

is a k-series base for (0,1]. Hence without loss of generality we assume
that R = 0, so that we shall be discussing k-series bases for (0,1].
Lemma 2.

Proof. Since 6 is a rootof f(z) = zk +8-1and 0<H<K 1, we see

that
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m 00 +
nHtvk _ ont k.ww _ ,n+i 1 _ o™ _ pn
29 0 E 0" =0 <1_6k>———9———9.

V=9 V=0

for m = 0. Since 6 <1 it follows that

0
91+Vk =1,
V=0
and hence
e o}
R - E :9n+1+vk £ n=0,
V=0

as required.
Proof of sufficiency. We show that ©") is a k-series base for (0, 1].

Let 0 <=x =1, First we construct inductively a sequence (iy) of pos-

itive integers such that iv = iV +k for v =1, and

-+
im—i+k m i,
4.1) 6 EX—EG >0 ,
V=4

for m = 1. The integer i; is chosen so that
Gii—l = x > 9i1

and since 6 + 9k = 1 we see that

911—1'1'1{ - Gii—i _ 611 >x- Bil >0,
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Let t =1 be an integer and suppose that iy, is,-<+,i; are chosen so that 4.1)

holds for m =t¢t, and J‘LV Ziv+k for 1 =v <t Then we choose i

+ t+

such that

i, -1 t i i
4.2) g i 2x-§9V>6t+1 .

=g

Hence

. . . !

i, -1tk i, -1 i

ot o gt g™y Yy gV =0,

v=1i

From (4.2) and the assumption that (4.1) holds for m = t it follows that

i, -1tk i, -1
ot > g tH

Hence i, = it+k. The construction of the sequence (iv) follows by

t+1
induction.
Since 0 <1 it follows from (.1) that there exists a representation of

X in the form

00

i
(4.3) x=ZGV ,

V=1

=i -+ =1,
piy =1, k for v =1

This representation of x is unique. For otherwise we may assume

where i; =21 and i

without loss of generality that

oo, o .
z elV - E 9 JV
v=1

V=1
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where iy =1 and i =i,+k for v =1, j =1 and j =j,+k for

v+ v+

v =1, and iy < jj. Then

. i j jitvk ji-1
911<§9”=§eys§9 o
V=1

V=1 V=0

1l

by Lemma 2. Hence i; = j; - 1, which contradicts the assumption that iy <
J1e

Since 6 >0, no non-positive numbers can be represented in the form
(4.3). By Lemma 2,

and so 1 is the largest number which has a representation in the form (4.3).
Hence (0") is a k-series base for (0, 1]. This completes the proof of the
sufficiency.

Proof of necessity. We show that if the sequence (bn) is a k-series
base for (0,1], andif b, =b >0 for n =1, then b =6" for n =1

For shortness we write by = 1, but as stated earlier, by the sequence

(bn) we mean the sequence (by,by,+++). The sequence (bn) is strictly de-
creasing, for if bi = bj for i # j then clearly some numbershave more than

one k-series representation. For n =1 we define

= = s iy = i =i + = .
Bn rlr biV, iy n, i, =i, k for v =1
V=i

We denote by En the least upper bound of Bn' Since (bn) is a positive
strictly decreasing sequence it follows that

n n+vk
V=0

(4.4) B = E b for n=1
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and

B = B > =
4.5) Bn Bn+1 0 for n=1.

It follows from (4.5) that there exists a non-negative realnumber { such
that En—>ﬂ as n >o. But, by (4.4)

fo'e] m o)
= i B = ﬂ
Zb1+Vk mh};“ Z b1+vk * B1+(m+1)k § :b1+vk 5
v=0 V=9 V=)
so that £ = 0. Hence
(4.6) _En—>0 as n—> o .

We now prove by induction upon n that
“.7) B = b

for n = 0. Since (bn) is a k-series bhase for (0,1] it follows from (4.5)
that By = 1, and so (4.7) is true when n = 0. Let m = 1 be apositive inte-
ger and suppose as an induction hypothesis that (4.7) is true for 0 =n <m.

If bm > B then there is no k-series representation for %(bm +

m-+1

Bm+1)' Suppose that bm< Bm+1

sequence (jv) of positive integers, where j; = m and jV+1 = jv+k for

v =1, such that for v = 1 there are infinitely many positive integers n

. Then we can construct inductively a

satisfying

m-i

or

— 1
4.8 B . -b. -b, —ees -b, +ieB, if v=2.
“.8) mH T iy T Vi j n &8 1

By (4.5) and the induction hypothesis,



1968] BASES FOR INTERVALS OF REAL NUMBERS 347

b0=§1>b1= s T e > ] =B =

and so there are infinitely many positive integers n such that

= 1
Bm+1 +HEBm o

Let 6= 1 be an integer and suppose that the first § - 1 terms of (j,)
are chosen. Then for infinitely many positive integers n,

— 1 . _

&Bmﬂ FEEBy . HME=2

= 1

B__ -b, -b, -ec-b +:EB, ,if 6>2.

l m+ T Ui g Jgy B dg

Hence

o)

B -b -b, —eee-h +xeg B

L S PR ooy B i

i=j6_1+k

for infinitely many positive integers n. Therefore

B .. -b -b -eee-b =0,
s T PR i1

However, if B =p, +b, +eoo +b,_ , then, by replacing b, by its
m+1 AE IR 364 3614
k-series representation we obtain & k-series representation for Bm + dif-
ferent from the k-series representationgiven in (4.4), and this contradicts the
fact that (bn) is a k-series base. Therefore by (4.6) there exists a positive

integer q such that

Hence

B -b, -b, =c°° -bh, += U B.
mt1 Tjy g i5_4 n © i
i=j6_1+k
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for infinitelymany positive integers n. Hence there exists j& =j 61 + k such
that

= 1
B -b, -b, = +«co =D, + = & B,
mH Jg-y B € is
for infinitely many positive integers n. The construction of the sequence (j,)
follows by induction.
We deduce from (4.8) that for v = 1,

0 <B -b, -b, —es-bh, =B,
m+1 A1 J2 Ju_y Iy

and by (4.6) it follows that

00
Bm+1 = E ij .
v=1

This k-series representation for -ﬁm is different from that given in (4.4),

+1
which contradicts the fact that (bn) is a k-series base. Hence T:jm
and it follows by induction that (4.7) holds for all n = 0.

By (4.4), for n =0,

1 bm’

[e¢} o0

B = = -+ = + B

Bn+1 n+it+rk bn+1 § :bn+k+1+vk bn+1 Bn+k+1 ?
V=0 V=0

and therefore, by (4.7)

b =b + b for n =0,

n n+i n+k

The number 6 is the positive real root of the auxiliary polynomial £(z)

= zk +z - 1 of this recurrence relation. The modulus of any other root of

f(z) is greater than 6. For if |z| <0, then since 6 <1,
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lt@)] = [1-2@+2°") =1 - |z)a+]45H = 1-6a+6Y =0

9

whilst if f(z) = 0 and |z| =0, then

1-|g -]1-2|=1-|z|-|f@z)-2z+1 =1—|z|-|zlk=0 ,

so that

|1-2 = 1-]af ,

and hence arg z = 0 so that z = 0.

By Theorem 1, therefore, for some positive constant A, bn = A" for

n =1, However, we have shown that ©@") is a k-series base for 0,1],

and so it follows that A = 1. This completes the proof of the necessity and of
Theorem 2.
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