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i . INTRODUCTION. 

In this paper we discuss the problem of representing uniquely each real 
number in the interval (0, c ] , where c is any positive real number, as an 
infinite series of terms selected from a sequence (b ) of real numbers. We 
choose an integer k ^ 1 and require that any two terms of (b ) whose suf-
fices differ by less than k shall not both be used in the representation of any 
given real number. The precise definitions arid results are given in the next 
section* 

In an earlier paper [2] we discussed an analogous problem of represent-
ing the integers in arbitrary infinite intervals* 

2* STATEMENT OF RESULTS 

Throughout this paper k ^ 1 is an integer. Also the subscript of the 
initial term of any sequence is the number 1; e. g*, (c ) = (cj, c2, ° * • ) . 

In order to prove our main result, which is theorem 2, we need a result 
which we give in a slightly generalized form as Theorem 1* Let (c ) be a 
sequence of positive real numbers which obey the linear recurrence relation 

(2 «1) a^n+k + a2cn+k-i + 9#° + a k c n + i ~ c n = 0 

for n ^ 1, where a ,̂ • • • , ajj are non-negative real numbers independent of 
n, and at ^ 0, The auxiliary polynomial g(z) of this recurrence relation is 
given by 

g(z) = ajzk + a2zk"1 + • • * + a. z - 1 . 

It is clear that g(z) has just one positive real root p , and that this root is 
simple, 
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Theorem 1, If the sequence (c ) is strictly decreasing, and p is 
smaller than the modulus of any other root of g(z), then p < 1 and c = Ap 
for n ^ 1, where A is a positive real constant. 

We now define a k-series base for the interval of real numbers (0, c ] , 
where c is any positive real constant. This is analogous to the concept of an 
(h, k) base for the set of integers as an interval; this concept was given in the 
earl ier paper [ 2 ] . 

Definition. A sequence (b ) of real numbers is a k-ser ies base for 
(0,c] if each real number r E (0, c] has a unique representation 

(2.2) r = b. + b. + ••• 
i i 12 

where 

• 1 r H * 1 » + k 

for v — 19 and further, every such series converges to a sum r E (0, c ] . 
k It is clear that the polynomial f(z) = z + z - 1 has just one positive 

real root 0, that 0 is a simple root, and that 0 < 1 . Let R be a real num-
ber. We now enunciate our main result. 

Theorem 2. Let (b ) be a sequence of real numbers such that b ^ — n R 
b . > 0 for n ^ 1. Then (b ) is a k-ser ies base for (0,0 1 if and only n+i n J 

if 

b = eR + n 

n 

for n ^ 1. 
It is not true that all k-series bases are decreasing. For instance, 

when k = 2, the series (1 ,2 ,0 ,0 2 , • • • ) is a k-ser ies base for ( 0 , 2 + 0 ] . 
However, A. Oppenheim has shown that if the sequence (b ) is a k-series 
base for (0, c] for some e > 0, and if N is an integer such that b — b 
^ 0 for n — N then b = A# for n > k, where A is some positive con-
stant. It is not known if all k-ser ies bases (for k ^ 2) are ultimately 
decreasing. 

It follows from Theorem 2 that the sequence 
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(2.3) «rN+1, e-m\.-.,e-\ e\ e»,...) 

is a k-series base for (0,0"" ] , where N is any positive integer. Hence if 
r is any positive real number, and L and M are positive integers such that 
both 6" ^ r and 6" > r , then the k-ser ies representation of r in terms 
of the sequence (2.3) with N =? L is the same as with N= M. For shortness, 
therefore, we can refer to this as the ?0-representation1 of r . Then, if an 
initial minus sign is used in representing negative numbers, we can give a 
unique '©-representation1 for any real number. A '©-representation* of real 
numbers is akin to decimal representation, but is much more closely related 
to binary representation since when k = 1 the f6-representation1 and the 
binary representation of the same real number are the same (for when k = 1, 
e = J). 

A further observation is that any sum T of a finite number of terms of 
*0_j.j D i n 

the sequence (6 ,8 9*°*)9 where R is any real number, in the form 

eh + eh + . . . + 0*0-1. + Av-i 

where i + 1 — iv
 + k for 1 ^ v < a, can be written in the form 

00 

T 

where i^+1 ^ ip + k for v ^ 1, simply by putting 

(2.4) fl^-1 = ^Ji<^vk 

(The relation (2.4) follows from the relations 

00 

yv 
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and 

for n ^ 0? both of which are very easily proved*) This fact is analogous to 
e • 

the decimal equation 1 = 0*9 or the binary equation 1 = 0.1, 

3e PROOF OF THEOREM 1 

We first prove Lemina 1, an equivalent form of which occurred originally 
in [3 ] and was also quoted in [4] . 

Lemma 1. If Qtl9a29® • * 9a^ are real numbers then there exists an in-
creasing sequence (nj) of positive integers such that 

exp (in.a )—>1, exp (in.of )—=>ts «®a exp (ima )—->1 as j-~>oo* 
J 1 ] 6 J P 

Proof. For x a real number, let x be the number differing from x by 
a multiple of 2TT such that -*r < x ^ 7r. We prove the lemma by showing that 
if we are given any positive real number € > 09 and any .positive 'integer N, 
then we find an integer n ^ N such that 

no7 < e for 1 ^ s ^ p9 

Let M be the region in p-dimensional space in which each coordinate ranges 
from - i r to 7r. Let the range of each coordinate be 'divided into m equal 
par ts , where 

€ 

is an integer. Then M is divided into wP equal parts . Consider now the 
m p + 1 points 

(NM3?IS Ni/a2?
 e 9 % Nwar ) for 1 < y < n r . 

IT 

One part of M must contain two of these points; let the corresponding indices 
be vi and 2̂* Then clearly 
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for 1 ^ s ^ p, and 

I n - î l > i . 

We put 

n = N\vt - P2 | 5 

this proves Lemma 1, 
Since 

in the form 
Since (c ) obeys the recurrence relation (2.1), c can be expressed 

u / v s 

* -x: 2>vk (3.1) c„ = > I > n X s J n for n ^ 1 , 
s=i \ t=o 

where the numbers (a are the distinct roots of g(z), the number (v_ + 1) is 
s s 

the multiplicity of the root f for 1 ^ s ^ u, and the numbers B , are suit-
able complex constants. Let = f f . We consider two cases. 

Case 1. B t = 0 when (s,t) £ (sf
f0). Then by (3.1), 

(3.2) c n = B s f Q P n for n ^ 1 . 

Since ci5 p > 0 it follows by (3.2) that 

Bs*o ~ J 9 

a positive constant, Since (c ) is a decreasing sequence* p < 1. Hence the 
theorem is true in this case. 

Case 2. B , f 0 for at least one pair (sft) fi (sf
f0). This implies that 

k ^ 2. We shall deduce a contradiction. By rearranging the terms in (3.1) if 
necessary, there is a number p where 1 < p < u, and a number q9 where 
G < q < min (vj, V2» • ° • $ Vp) such that 
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(i) For 1 ^ s ^ p , B g q f 0, |fs| = j£i| and B g t = 0 for q < t < 

V 
(ii) for p < s ^ u, if |fg| = | £ | then Bgf. = 0 for q < t < vg, and 

if |fg|?> jfij then B g t = 0 for 0 ^ t ^ vg. 
Then by (3.1) 

P 

(3.3) %=Jjsq»% + R • 
s=i 

y n where R is the sum of a finite number of non-zero terms of the form Cn f g , 
where C is a complex constant and either If J = |fij and y < q, or If J < 
Ifl j Our assumption implies that either 

(3.4) jfi) => p or q > 0 . 

If |fg| < |fi] then n^jfgl n / l f i | n ->0 as n ^ c o . Hence 

(3.5) R / | f i | n n q ^ 0 as n ^ o o . 

For 1 < s ^ p, let f = r exp (i a ), where r and or are the 
s s s s s 

modulus and argument of f „, respectively. Then by (3.5) and (3.4) respectively, 

(3.6) R / r ? n q ->0 as n->oo 

and either 

(3.7) r ! > p or q > 0 . 

Further, let w be the smallest positive integer such that when n = w, E ^ 
0, where 

P 

E = / B„ exp (inc* ), for n ^ 1 . 
n JLmJ SCL s 

s=i 
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The number w exists, for otherwise B = 0 for 1 :< s <. p. From (3.3) 
sq 

and (3.6) 

B exp (two? ) • exp (i(n - w)a ) + 0(1) as n -> oo. 
SQ S S 

By Lemma 1 there exists a sequence (n.) of positive integers such that 

(3.8) 

It is clear from (3.8) that E is real and positive; since (c ) is a decreasing 
sequence, we have also that r* < 1 and hence p < 1 . 

By (3.7) and (3.8) there exists an integer m such that 

c 
n. L_ = E + 0(1) 

w 
as J - > • 

c c /rA 
m = m ' l * 
m m i 

p rj m 

in "m f "A I q ^ ( C l \ 1-k 
— = — * f — I . • *aH > l -p - i P m m q \ P / 

""i mH \ r / 

Hence, 

% (Ci\ m - f c H N / c * \ m-k+2^ J C A m 
(3.9) c i . > c i ^ > 0 8 e > c > I -— I p > I — I p > •••>!—J p 

7 m-k+i m-k+2 m \ p / \ P / \ P / 

Therefore, 

(3.10) c m fc = a ^ + a 2 c m - 1 + •- . .+ a k c m _ k + 1 > [jj (ajp111 + ajp111"1 + 

m-k+i v + • • • + afe ) 

Using (3.9) and (3.10) we find in a similar way that 
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c m« •k-t> ( ? ) 

and 

•x • '• 
c y E i ^ . m - k - 2 

D l - k - 2 

and so on, until 

C i > (?)•• 
a contradiction. Hence Case 2 does not occur. This proves Theorem 1. 

4. PROOF OF THEOREM 2 

R The sequence (b ) is clearly a k-ser ies base for (0,6 ] if and only n 
if 

U) 
is a k-series base for (0,1]. Hence without loss of generality we assume 
that R = 0, so that we shall be discussing k-ser ies bases for (0,1] . 

Lemma 2. 

0 0 

0 for n Z 0 . 

k Proof. Since 6 is a root of f (z) = z + s - 1 and 0 < 6 < 1, we see 
that 
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-V) 
for m ^ 0e Since 0 < 1 it follows that 

00 

1 t 

^=0 

and hence 

00 

~n \ "\n+H-i>k 
for n ^ 0 , 

V=0 

as required* 
Proof of sufficiency. We show that (0 ) is a k-series base for (0,1]. 
Let 0 < x ^ 1* Firs t we construct inductively a sequence (i ) of pos-

itive integers such that i ,„ ^ i,, + k for v ^ 1, and 

1+k m " 
(4,1) 0 m ^ x -S^B V > 0 , 

l*=i 

for m ^ 1. The integer i | is chosen so that 

and since 8+6 = 1 we see that 

0ii-i+k = 6 I i - i _ 0 i i > x _ e i i > 0 m 



344 BASES FOR INTERVALS OF REAL NUMBERS [Dec. 

Let t ^ 1 be an integer and suppose that i*, i2, • • • , it are chosen so that (4.1) 
holds for m = t, and i ., ^ i + k for 1 ^v < t. Then we choose i, ,4 

Vwr\ V VT\ 
such that 

(4.2) eWl . X -VA>> 
l^t 

Hence 

t+i 
9 Vf * = ^t+r _ 0Vi > x _ ^ e - > o . -3? 

From (4.2) and the assumption that (4.1) holds for m = t it follows that 

6 * > 0 t+1 . 

Hence i ,+ ^ i, + k. The construction of the sequence (i ) follows by 
induction. 

Since 6 < 1 it follows from (4.1) that there exists a representation of 
x in the form 

00 

(4.3) x 
oo 

where ii — 1 and i ^ i " + k for v ^ 1. 
This representation of x is unique. For otherwise we may assume 

without loss of generality that 

, 00 . 00 

2>v -L*v • v=i v=l 
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where it ^ 1 and iJ/+1 ^ ip + k for u ^ 1, j t ^ 1 and j - 5^ + k for 
v ^ 1, and ii < j 1 # Then 

oo . oo oo . •. 
u 

by Lemma 2. Hence ii > ji - 1, which contradicts the assumption that i* •< 

Since 6 ^ 0, no non-positive numbers can be represented in the form 
(4.3), By Lemma 2, 

00 

V + * = i 

and so 1 is the largest number which has a representation in the form (4.3). 
Hence (6n) is a k-ser ies base for (0,1]. This completes the proof of the 
sufficiency. 

Proof of necessity. We show that if the sequence (b ) is a k-ser ies 
base for (0,1], and if b n + 1 s> b n > 0 for n s> 1, then b n = 6n for n s> l . 

For shortness we write bo = 15 but as stated earlier, by the sequence 
(b ) we mean the sequence (bl5b29

oee)* The sequence (b ) is strictly de-
creasing, for if b. = b. for i f- j then clearly some numbers have more than 
one k-series representation* For n ^ 1 we define 

B = r | r = Y \ ; ii = n, i ^ i „ + k for v * 1 . 
I JmmwJ V I 
1 P=l > 

We denote by B the least upper bound of B . Since (b ) is a positive 
strictly decreasing sequence it follows that 

oo 
(4,4> 5» =X>"k f°r Q S 1 
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and 

(4.5) B ^ B ^ ^ 0 for n ^ 1. 
n n+i 

It follows from (4.5) that there exists a non-negative real number I such 
that B "^ * as n ^oo. But, by (4,4) 

n 

oo / m \ oo 

so that ^ = 0. Hence 

(4.6) B —>0 as n-5> oo 
n 

We now prove by induction upon n that 

(4.7) B ,, = b 
n+i n 

for n ^ 0. Since (b ) is a k»series base for (0,1] it follows from (4.5) 
that Bf = 1, and so (4.7) is true when n = 0. Let m ^ 1 be a positive inte-
ger and suppose as an induction hypothesis that (4,7) is true for 0 ^ n ^ m. 

If b > B then there is no k-series representation for -|(b + 
B ,.,)« Suppose that b < B ,.. Then we can construct inductively a m+i m m+i J 

sequence (j^) of positive integers, where ji = m and j + •— j + k for 
v ^ l , such that for v ^ 1 there are infinitely many positive integers n 
satisfying 

B _ + •! e B. if i/ = l , 
m+i n j 

or 

(4.8) B ^ - b . - b. - • • • - b. + - G B. if v ^ 2 . 
Bi+i Ji 32 J - n J - i 

By (4.5) and the induction hypothesis, 
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u A l xa-i m m+i 

and so there are infinitely many positive integers n such that 

B + I e B . 
m+i n m 

Let S1^ 1 be an integer and suppose that the first 5 - 1 terms of (jp) 
are chosen. Then for infinitely many- positive integers n9 

B . . + - G B . , if 5 = 2 m+i n i-
J 6 - i 

B ^ - b . - b . ^ • • • - b. + ~ E B . , if 6 ^ 2 . m+i Ji J2 J6„2 n J f l - 1 

Hence 
00 

B ,, - b. - b. - ••• - b . + » e l J B. 
i=j J. +k J 6 - i 

m+i ji 

for infinitely many positive integers n* Therefore 

B j . - b. - b . - ••• - b . ^ 0 
m + i Ji J2 J 6 „ 4 

However* if B , = b . + b. + •• ° + b. , then* by replacing b. by its 
m+i Ji J2 35-1 J6-i 

k-ser ies representation we obtain a k-series representation for B dif-
ferent from the k-series rep re sentation given in (4,4), and this contradicts the 
fact that (b ) is a i 
integer q such that 

fact that (b ) is a k-series base* Therefore by (4.6) there exists a positive 

Hence 

B . - b . - b . - ••• - b . > B „ 
m+i Ji j 2 Jg_1 q 

B , - b. - b. - • • • - b . + ™ 6 1 / B. 
m+i Ji J2 j . n v y i 
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for infinitely many positive integers n. Hence there exists j c — i + k such 
o 8-i 

that 

B ., - b. - b. - . . . - b . + - £ B . m + 1 Ji 32 3g-.1 n 38 

for infinitely many positive integers n. The construction of the sequence (j ) 
follows by induction. 

We deduce from (4.8) that for v > 1, 

0 < B _,_ - b. - b. - — - b . =£ B . 

and by (4.6) it follows that 

00 

B 
L-d j 7 . 

This k-series representation for B is different from that given in (4.4), 
which contradicts the fact that (b ) is a k-ser ies base. Hence B , = b s 

n m+i m 
and it follows by induction that (4.7) holds for all n ^ 0. 

By (4.4), for n ^ 0, 

OQ 00 

Bn+i = ^ L A + i + ^ k = bn+i +J^bn+kH-i+i'k = b]t l+1 + Bn+k+l J 

Z^=0 V=Q 

and therefore, by (4.7) 

b = b , + b ,, for n ^ 0 . n n+i n+k 

The number 0 is the positive real root of the auxiliary polynomial f (z) 
+ z - 1 of this recurrence relation. The modulus of 

f(z) is greater than 0. For if | z | < : 0 , then since 6 ^ 1 , 

k = z + z - 1 of this recurrence relation. The modulus of any other root of 
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|f(z)| = | l - z ( l + z k ^ ) | ^ 1 - | z | ( l + |z|k""1) =- 1 - 0 ( 1 +A*-1) = 0 , 

whilst if f(z) = 0 and | z | = 0 , then 

1 - | z | - | l - z | = l - | z | - | f ( z ) - z + l | = l - | z | - | z | k = 0 , 

so that 

| l - z | = 1 - | z | , 

and hence arg z = 0 so that z = 0. 
By Theorem 1, therefore, for some positive constant A, b = A0n for 

n — 1. However, we have shown that (0 ) is a k-ser ies base for (0,1], 
and so it follows that A = 1. This completes the proof of the necessity and of 
Theorem 2. 
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