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Editorial Note: Keep those problem proposals coming, Folks! 

H-153 Proposed by J. Ramanna, Government College, Mercara, India. 

Show that 

( l ) 4 7 „F3k+lF3k+2 ( 2 F3k+1 + F6k+3) ( 2 F3k+2 + F 6k+3 ) F3n+3 

n 
Mi) 16 7 F F F (2 F2 - F2 F2 ) = F 8 

S J 3k+1 3k+2 6k+3 6k+3 3k 3k+3 3n+3 ' 
0 2r Hence generalize (i) and (ii) for F „ 3 . 

H-154 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that for m, n, p integers >0, 

i , j ,k^0 
E / m + l \ / n + l \ / p + l \ 

\̂  j + k + 1J yi + k + 1 f\i + j + 1/ 

m n p 

X^ \ ^ \ V m - a + b\ / n - b + c\ /p - c + a \ J U L ( b ( c ) a j ' 
rt_n u _ n rt_n \ / \ x a=0 b=0 c=0 

and generalize. 
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H-155 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Haliiax, Canada. 

The Fibonacci polynomials are defined by 

f , - (x) = x f (x) + f - (x) n+1 n n-1 

with fi(x) = 1 and f2(x) = x. Let z = f (x)f (y). If z satisfies the 
r 5 S r S X*jS 

relation 

r+4,s+4 r+3,s+3 r+25s+2 r+ l , s+ l r , s 

show that 

a =' c = -xy, b = -(x2 + y2 + 2) and d = 1. 

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

n oo oo 

n=0 " k=l n=-*> k=0 

E n(n+1) n V q ' 
n=-oo k=0 

- - (k+D2
 k 

where 

(q)n = ( l - q ) d - q 2 ) - " (1 - q11) . 

H-157 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

by 
A set of polynomials c (x), which appears in network theory is defined 

cn+1(x) = (x + 2)cn(x) - c ^ j W (n > 1) 
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with 

c0(x) = 1 and c^x) = (x + 2)/2 . 

(a) Find a polynomial expression for c (x) . 
(b) Show that 

2cn(x) = bn(x) + bn - 1(x) = Bn(x) - Bn - 1(x) , 

where B (x) and b (x) are the Morgan-Voyce polynomials as de-
fined in the Fibon^cci^Quai^ VoL 5, No. 2, p. 167. 
Sh< 

(d) If 
(c) Show t h a t 2 c 2 (x) - c 0 (x) = 1 n ^ n 

Q = (x + 2) 
1 • ; ] • 

show that 

\ % 

k-i 
" V i l 
-Cn-2J 

- | ( Q n - Q n " " 2 ) for (n > 2) 

Hence deduce that c , - c - - c2 = x(x + 4)/4 n+1 n-1 n x " 

SOLUTIONS 
A T L A S T 

H - 9 8 Proposed by George Ledin, Jr., San Francisco, California. 

If the sequence of integers is designated as J , the ring identity as I, 
and the quasi-inverse of J as F , then (I - J) (I - F) = I should be satisfied. 
For further information see R. G. Buschman, f'Quasi Inverses of Sequences," 
American Mathematical Monthly, VoL 739 No. '4, HI (1966), p. 134. 

Find the quasi-inverse sequence of the integers (negative, positive, and 
zero). 
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Solution by the proposer. 

The sequence u + 2 == au - + bu with initial conditions u0 fi 1, uj, 
has the quasi-inverse 

v ^0 = Av , - + Bv , n+2 n+1 n 

where 

A = a + u t / (1 - u0), B = b / ( l - u0) 

with initial conditions 

v0 = -u0 / (1 - u0), V! = - u t / ( l -u 0 ) 2 . 

Since the sequence of integers is defined by the recurrence relation 

u , 0 = 2u , - - u n+2 n+1 n 

with initial conditions UQ = 0, u^ = 1, its quasi-inverse is then 

v J 0
 = 3v ,- - v n+2 n+1 n 

with initial conditions VQ = 0, v^ = - 1 which yields 

0, - 1 , - 3 , - 8 , - 2 1 , -55, -144, - 3 77, . . . • , - F ^ , " • . 

SUM PRODUCT! 

H-120 Proposed by M.N.S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

The Fibonacci polynomials are defined by 

fi(x) = 1, f2(x) = x . 

If z = f (x) • f (y), then show that 
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(i) z satisfies the recurrence relation, 

Zn-Ht = ^ ' zn+3 " ( x 2 + ^ + 2 ) zn+2 " ^ * V l + z n = ° * 

n 
(li) (X + Y)2 ' X/r = (V2 - Vl> - (xy - 1 , ( V l " Zn} • 

1 
Solution by C.B.A. Peck, Ordnance Research Laboratory, State College, Pennsylvania. 

( i ) zn+4 = W W k ^ 
= ( x W x > + W x ) ) ^ n + 3 ^ + W * » 
= xyz n + 3 + xf n + 3(x) f n + 2 (y ) + yf n + 3 (y) f i i + 2 ( X ) ^ ZR+2 

= xyzn+3 + (x2 + y2 + 2) z n + 2 - z n + 2 

+ x W x ) W y ) + y f
n + i < y > W x ) 

so that 

znn4 - x y z n+3 " (x* + ** + 2 )zn+2 = ~ x y V l " ^ + 1 W V y ) 

" y W y ) f n ( x ) - z n + xyVl + x W x ) f n ( y ) + x y V l 
+ y f n+l ( y ) fn ( x ) = x y z n + l ~ V a s d e s i r e c L 

(ii) n = 2: by expansion9 

(x + y)2(l +xy) = (x3 + 2x)(y3 + 2y) - 1 - (xy - 1)( (x2 + l)(y2 +' 1) - xy). 

Thus for an inductive proof we need only to show the r. h. and 1. h. increments 
equal. The r. h. one is 

V 2 " V l - ( x y " 1 ) ( V l - z n } - Vl + z n-2 + ( x y " 1 ) ( z n " V l > 
= zn+2 " ^ n + l + 2 ( x y " 1 ) z n " ^ n - l + z n - 2 ' 

which by (i) is 

(x2 + y2 + 2)zn + 2(xy - l )z n = (x + y)2zn , 

the 1. h. one. 
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Also solved by the proposer, B. King, A. Shannon, L. Carlitz, and C. Bridger. 

IN SUMMATION 

H-121 Proposed by H.H. Ferns, University ot Victoria, Victoria, B.C., Canada. 

Prove the following identity. 

where F is the n Fibonacci number, m, A are any integers or zero and 
k is an even integer* or zero. 

Write the form the identity takes if k is an odd integer. 
Find an analogous identity involving Lucas numbers. 

Solution by the proposer. 

The following identities will be required. 

(1) a k F - QfmF. = (-l)kF . w m k s m-k 

(2) j3kF - /3mF. = (-l)kF . , w r m ^ k N m-k ' 

where a = (1 + AJ5)/2, j8 = (1 - ^ ) / 2 and F = (an - &*')/'*JE. 
The proof of (1) follows. The proof of (2) i s similar 

a F - ff F, = a —£-— I - a ( —— 1 

% m-k 
= F m-k • 

since k is even. 
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Identities (1) and (2) may be written as follows: 

(3) 1 + ( j A - ) *" = (^-) «k Cm t k) 
\ m-k/ \ m-k/ 

(4) 1 + / J ^ V = (j^)ek (m̂ k) . 

Let 

At = = r - ^ - and v = m 

j 1 F 
m-k m-k 

From (3) and (4) we derive the following: 

(5) (i + ^ r - a + ^ m ) = A « n k - $*> 

(6) (1 + / ^ m ) n + (l + ^ m ) n = / ( ^ + Z ^ ) 

From (5) we get 

n 

i=l 

(7) > . m ^ F , = » n F r :(fV "mi nk 

th u denotes me r n 
we obtain 

If L denotes the n Lucas number then L = an + ^ and from (6) n n 

i=l 
(8) > ( " ) ^ L m i = ^ - 2 . 
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We now add corresponding members of (7) and (8) and simplify the result 
by applying the identity 

F + L = 2 F ̂  n n n+1 

This gives 

£&)•>'. <»> > .m-'iW -"iw-i 
i=l 

Adding corresponding members of (7) and (9) and applying the recursion 
formula 

F + F = F n n+1 n+2 

to the result yields 

<10) > f"»^Fxni+2= ^ . W " 1 mi 
i=l 

Repeating the last operation on (8) and (9) and on each successive pair of 
identities derived in this manner we get 

JWteK^ = te) F n k + X " r X ( m ^ k ) 

If k is an odd integer this identity takes the form 

t^&^-m Fnk+X " FX ( m ' k ) 
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Beginning with the two identities 

* k L - ^ A . = (-l)kL . m k m-k 
i^L + ^ £ m F , - ( - l ) k L . m k m-k 

and following the procedure adopted above we arrive at the identity 

i=l 
where 

a)-mfe)'---te)" nk+A A 

F mi+ \ i f i i s o d d 

Jmi+X ^ m L . . . if 1 is even 

and k is an even integer or zero. If k is an odd integer this identity takes 
the form 

S^tek'-fej Lnk+X ~ LA 

Examples. If A = 09 m = 1, k = 2 the first identity gives us the well-known 
formula 

i=l 

The same values for these parameters when substituted in the second identity 
gives the not-so-well-known formula 

-(;)6Fi + (s)^-(;)6iF«+(;)5^-(s)6,F 

Also solved by L. Carlitz, and A. Shannon. 
STIRLING PERFORMANCE 

H-123 Proposed by D. Lind, University of Virginia, Charlottesville, Virginia 

5 + . . . = ( _ 1 ) " L O „ - 2. J2n 

Prove 
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n m 
F - y y ^(m)s(k) p t . 

n / *- JL^J n m k 
m=0 k=0 

where S and $ are Stirling numbers of the first and second kinds, re» 
r r tli 

spectively, and F is the n Fibonacci number* 
Solution by the proposer. 

Stirling numbers are defined by 

n 
(m) m x(x - 1) • • • (x - m + 1) = Y ^ S^m)x: 

m=0 
n 

:n = Y ^ j^ m ) x(x - ! ) • • • (x - m + 1) 

m=0 
n 

n ^ x 
m=0 

Letting a = (1 + V5)/2, b = (1 - VB)/2, we have 

(1) 

Similarly j 

n 
n ^ a 

m=0 
n m 

n = ] C ^m)a(a " 1] ' *' (a - m + 1) 

= ^ Am) y • 
m=0 k=0 

( k ) a k 
m 

n m 

It follows 
m=0 k=0 

n m 

( n O s « b k p 
m 

<**-**)/* = Z Z 4m)sm (ak " bk)/ ^ • 
m=0 k=0 

which is the desired result. 
£(1) may be found in Jordan1 s Calculus of Finite Differences? page 183J 

Also solved by David Zeitlin. 
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BINET? 

H-124 (Corrected). Proposed by J.,A. H. Hunter, Toronto, Canada. 

Prove the following identity: 

"p2 T 2 -p2 T 2 = T? xp 
m+n m+n " m m 2n 2+(2m+n) ' 

where F and L denote the n Fibonacci and Lucas numbers, respectively, 

Solution by Paul Smith, University of Victoria, Victoria, B.C., Canada. 

A routine computation shows that: 

r , m + n /3m+nv, m+n , ^m+nvi2
 r , m 0 m w m^ ^m^ 2 

F2 L2 - F2 L2 = ^ ~* " ^ " " ^ " ^ ^ ^ ** 
m+n m+n m m , ax2 

(a - PY 
= (^4 ( m + n ) + j 3 4 ( m + n ) - 1) - (*4 m i- £ 4 m - 1) 

(a - 02 
= (a4 ( m H'n ) + / ^ + ^ ) , d*i ^ (g4m + /g4n) 

(or - £)2 

^2n __ ^2nj (Q2(2m+n) _ ^2(2m+n)) 
= — ^ T ^ p • — ^ § j -

F2nF2(2m+n) 8 

(It i s merely necessary to observe that ap = -1 . ) 

.Also solved fey C. Bridger, M. Bicknell, A. Shannon, C.B.A. Peck, J. Wessner, F. D. Parker, 

M. N. S. Swamy, and R. Whitney. 

* * * • # 


