REFERENCES

1. A. F. Horadam, "Complex Fibonacci Numbers and Fibonacci Quaternions," Amer. Math. Monthly, 70, 1963, pp. 289-291.
2. A. F. Horadam, "A Generalized Fibonacci Sequence," Amer. Math. Monthly, 68, 1961, pp. 455-459.
3. Muthulakshmi R. Iyer, 'Identities Involving Generalized Fibonacci Numbers," the Fibonacci Quarterly, Vol. 7, No. 1 (Feb. 1969), pp. 66-72.
4. E. Lucas, Theorie des Numbers, Paris, 1961.

(Continued from p. 200.)

SOLUTIONS TO PROBLEMS

1. For any modulus m, there are m possible residues ($0,1,2, \cdots, m-1$). Successive pairs may come in m^{2} ways. Two successive residues determine all residues thereafter. Now in an infinite sequence of residues there is bound to be repetition and hence periodicity.

Since m divides T_{0}, it must by reason of periodicity divide an infinity of members of the sequence.
2. $\mathrm{n}=\mathrm{mk}$, where m and k are odd. V_{n} can be written

$$
\mathrm{V}_{\mathrm{n}}=\left(\mathrm{r}^{\mathrm{m}}\right)^{\mathrm{k}}+\left(\mathrm{s}^{\mathrm{m}}\right)^{\mathrm{k}}
$$

which is divisible by $V_{m}=r^{m}+s^{m}$.
3. $r=2+2 \mathrm{i} \sqrt{2}, \mathrm{~s}=2-2 \mathrm{i} \sqrt{2}$.

$$
\mathrm{T}_{\mathrm{n}}=\left(\frac{2-3 \mathrm{i} \sqrt{2}}{16}\right) \mathrm{r}^{\mathrm{n}}+\left(\frac{2+3 \mathrm{i} \sqrt{2}}{16}\right) \mathrm{s}^{\mathrm{n}}
$$

4. The auxiliary equation is $(x-1)^{2}=0$, so that T_{n} has the form
5.

$$
\begin{aligned}
& T_{n}=A n \times 1^{n}+B \times 1^{n}=A n+B \\
& T_{n}=2^{n}\left[\left(\frac{b-2 a}{4}\right) n+\frac{4 a-b}{4}\right]
\end{aligned}
$$

(Continued on p. 224.)

