$$
S=(1 / 3+1 / 5)+(1 / 5+1 / 7)+\cdots+(1 / 32717+1 / 32719)
$$

be the sum of the sum of the reciprocals of all twin primes below 2^{15}. Indicate which of the following inequalities is true:
(a) $\quad \mathrm{S} \nprec \pi^{2} / 6$
(b) $\pi^{2} / 6<S<\sqrt{\mathrm{e}}$
(c) $\sqrt{\mathrm{e}}<\mathrm{S}$.

Solutions by Paul Sands, Student, University of New Mexico, Albuquerque, New Mexico, and the proposer. (Both used electronic computers.)

	$\frac{\text { Proposer }}{}$	Paul Sands
True inequality	55	(b)
Number of pairs of primes involved	1.647986	55
S, to six decimal places	1.648627	

(Continued from p. 210.)
6.
7.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =-(-\mathrm{i})^{\mathrm{n}} \\
\mathrm{~T}_{\mathrm{n}+1} & =5 \mathrm{~T}_{\mathrm{n}}-6 \mathrm{~T}_{\mathrm{n}-1} \\
\mathrm{~T}_{\mathrm{n}} & =2^{\mathrm{n}}+3^{\mathrm{n}-1}
\end{aligned}
$$

8.

$$
\mathrm{r}=\frac{5+\sqrt{29}}{2}, \quad \mathrm{~s}=\frac{5-\sqrt{29}}{2}
$$

$$
\mathrm{T}_{\mathrm{n}}=\frac{\mathrm{r}^{\mathrm{n}}-\mathrm{s}^{\mathrm{n}}}{\sqrt{29}} \text { with terms } 1,5,26,135, \cdots
$$

$$
\mathrm{V}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}+\mathrm{s}^{\mathrm{n}} \text { with terms } 5,27,140, \cdots
$$

9. $\quad r=\frac{3+i \sqrt{11}}{2}$,

$$
\mathrm{s}=\frac{3-\mathrm{i} \sqrt{11}}{2}
$$

$$
\mathrm{T}_{\mathrm{n}}=\left(\frac{33-16 \mathrm{i} \sqrt{11}}{55}\right) \mathrm{r}^{\mathrm{n}}+\left(\frac{33+16 \mathrm{i} \sqrt{11}}{55}\right) \mathrm{s}^{\mathrm{n}}
$$

10.

$$
\mathrm{T}_{\mathrm{n}+1}=5 \mathrm{~T}_{\mathrm{n}}+2 \mathrm{~T}_{\mathrm{n}-1} ; \mathrm{T}_{1}=3, \mathrm{~T}_{2}=7
$$

