and then describe as many patterns observed as possible. You will be amazed at the results. Since

$$
\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right) /(\alpha-\beta)=\mathrm{F}_{\mathrm{n}}, \quad \alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=\mathrm{L}_{\mathrm{n}}
$$

and

$$
\alpha^{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \sqrt{5}\right) / 2, \quad \beta^{\mathrm{n}}=\left(\mathrm{L}_{\mathrm{n}}-\mathrm{F}_{\mathrm{n}} \sqrt{5}\right) / 2
$$

for the Fibonacci sequence defined by

$$
\mathrm{F}_{1}=\mathrm{F}_{2}=1, \quad \mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}
$$

and the Lucas sequence defined by

$$
L_{1}=1, L_{2}=3, L_{n}=L_{n-1}+L_{n-2}
$$

the teacher can readily check the results.
If you have found interesting uses of the Fibonacci numbers in high school teaching, you are invited to send a description to the Fibonacci Quarterly.

Continued from page 300 .
SOLUTIONS TO LINEAR RECURSION RELATIONS PROBLEMS
1.

$$
T_{n+1}=8 T_{n}-18 T_{n-1}+16 T_{n-2}-5 T_{n-3}
$$

2.

$$
\mathrm{T}_{\mathrm{n}}=-5 / 2+7 \times 2^{\mathrm{n}}-(7 / 6) 3^{\mathrm{n}}
$$

3.

$$
\mathrm{T}_{\mathrm{n}+1}=4 \mathrm{~T}_{\mathrm{n}}-2 \mathrm{~T}_{\mathrm{n}-1}-3 \mathrm{~T}_{\mathrm{n}-2}
$$

4.

$$
T_{n+1}=2 T_{n}+T_{n-1}-3 T_{n-2}+T_{n-4}
$$

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}=12+\frac{1}{\sqrt{13}}\left(\frac{3+\sqrt{13}}{2}\right)_{\star \star \star \star \star}^{\mathrm{n}}-\frac{1}{\sqrt{13}}\left(\frac{3-\sqrt{13}}{2}\right)^{\mathrm{n}} \tag{5}
\end{equation*}
$$

