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INTRODUCTION 

The recreational exploration of numbers by the amateur can lead to d is-
covery, or to a different way of looking at problems, because he often does not 
know the conventional approaches* Sometimes, as a form of amusement, I 
picked a quadratic expression at random, set it equal to a square and then tried 
to solve the resulting equation in positive integers. Whenever I was able to 
solve the problem I noticed that recurrency was evident. One of the most sat-
isfying results came from the solution of 5x2 =t 6y + 1 = y2 where the recur-
rent relationships involved Fibonacci and Lucas sequences. However, the 
method reported [ l j for this solution is not general. An improvement in the 
method resulted from exploring the Pell and Lagrange* equations* As exper-
imental data accumulated I was able to make some conjectures and when I d i s -
cussed the results with my friend, Professor Burton W, Jones, he urged me 
to try to prove them. For his encouragement, l a m grateful. 

The following are some of these conjectures: 
a) For any recurrent equation such as U - = cU + U - or U - = 

cU - U - , c constant and even, there exists at least one Pell equation such n n-1 ^ 
that the sequence of Xfs and of Yfs follow the given recurrent law. 

b) In a Pell equation if DY| = X\ + 1 then the recurrent law for the 
sequence of X's or Yfs is U n + 1 = cUn + Un_1 and if DY| = X*- 1 then the 
governing law is U - = cU - U -. 

c) In Lagrange equations having the same D as a Pell equation, there 
exists a recurrent law common to both. (Proof to be offered in another 
communication.) 

*The Lagrange equations Dy2 = x2 ± N , N > 1 will be discussed in another 
communication. 

231 



232 RECURRENT SEQUENCES IN THE PELL EQUATIONS [Oct. 

Since a method of developing the sequence of one of the variables, in a 
Pell equation, independent of the other is so easy and since the proof justify-
ing such treatment uses only elementary algebra, without the use of continued 
fractions or convergents, I thought that the method might be of interest. As 
will be demonstrated, problems, relating to the Pell equations which seem 
difficult, are solved in an almost trivial fashion by means of the theorems to 
be developed here. (Before continuing the reader is invited to try solving 
problems 1-5.) 

PART 1 - THE PELL EQUATIONS 
DY* = X* -(- l )nandDY* = X* - 1 

For a given D > 1 and not a square the complete* Pell equations are 
either of the forms 

(1) DY^ = X^ - ( - l ) n 

or 

(2) DY^ - X2
n - 1, n = 0, 1, 2, 3, . - • . 

While both of these equations have the trivial solution X0 = 1, YQ = 0, the 
key to the general solution is in finding Xl9 Yj, either by inspection or other-
wise. How this may be done by convergents is explained by Burton W. Jones 
p ] , C. D. Olds [3], R. Kortum and G. M c N e i l ^ and others in books on 

number theory. 
The least positive, non-trivial solution '(X^Yj) is variously called the 

minimal or fundamental or generating solution. Once this solution is found, 
the general solution is given by 

(3) Xn + Y n ^ = ( x i + YiA/D)n . 

*The equation DY* = X* - ( - l ) n , n = 0 ,1 ,2 ,3 , # • • , is complete. However, 
it is commonly treated as two equations, e. g. , DY|, = X|, - 1 and DY|, 

= X|, - + 1 , k = 0 ,1 ,2 ,3 , - • •. Unless otherwise stated, we will assume that 
for the given D, the Pell equation is complete and we are dealing with all pos-
sible solutions. 
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The sum of the rational terms in the binomial expansion of (Xj + Yi^O)*1 is 
Xn and the sum of the irrational terms is Y VD* That equation (3) gives all 
of the possible solutions was first shown by Robert D. Carmichael and later 
explained in his book Diophantine Analysis [5 ]. 

When the minimal solution (Xl9Yi) is substituted in equations (1) and (2) 
we have respectively the minimal equations 

(4) DY2 = X2 + 1* 

and 

(5) DY2! = X2i - 1 . 

In either case, and irrespective of the sign preceding 1, the general so-
lution is given by the single equation (3). 

PROOF OF THREE THEOREMS ON RECURRENCY IN THE PELL EQUATIONS 

Theorem 1. In the integer solution of a Pell equation, the sequence of 
Xfs is recurrent as is the sequence of Yfs according to the recurrent law, 
U - = cU ± U 1 , c = 2Xj. The + sign is used if the minimal equation is 
DY2 = Xi + 1 and the - sign is used if DY2 = X2 - 1. 

To prove this theorem we combine the minimal equations (4) and (5) so 
that 

(6) DY2 = Xi dt 1 . 

Then for reference we prepare, from the general solution (3), the following 
set of equations: 

(7a) (Xi + YiVD)1 1"1 = Xn_1 + Y n 4 ^ 

*If the minimal equation for a certain D is DY2 = X2 + 1 then there are s o -
lutions for DY2 = X2 ± 1. If the minimal equation is DY2 = X2 - 1 then the 
only solutions are for DY2 = X2 - 1. Thus DY2 = X2 + 1 is not solvable for 
all Dfs nor does it have a trivial solution. 
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(7b) (Xi + YiN/D) n = X +Y N/D 

(7c) (Xi + Yt N/D ) n + 1 = X n + 1 + Y n + 1 N/D . 

When X2! + 2XiYA N/D i s added to both s ides of DY\ = x\ ± 1 we obtain x } + 

2XtYi N/D + D Y I = 2X2i + 2XiYt N/D ± 1 o r 

(8) (Xj + Y i V D ) 2 = 2Xi(Xi + Y W D ) ± 1 . 

— n 1 
Multiplying both s ides of this equation by (XA + Yt \ /D) ~ we der ive 

(9) (Xi + Yi *T5 ) n + 1 = 2Xi(Xi + Yi N/D f dt (Xt + Yt N/D J11"1 . 

Now when the appropr ia te subst i tut ions a r e made in this equation from s e t (7) 
we get 

X _ + Y ^ VD - 2Xj(X + Y N / D ) ± (X - + Y , *1T5) n+1 n+1 l n n n - 1 n - 1 

and r ea r r ang ing this equation we have 

( 1 0 ) X n + 1 + Y n + 1 ^ = { 2 X i X n * X n - 1 > + < 2 X i Y n * V l W ° ' 

After equating the rat ional and then the i r r a t iona l t e r m s in (10) we finally der ive 

(11) X '= 2XjX + X , 
n+1 x n - n - 1 

and 
( 1 2 ) Y n + 1 = 2 X i Y n ± Y n - l • 

Thus the proof of T h e o r e m 1 i s complete and equations (11) and (12) a r e the 

equations of the Theorem. 

*The equations of the Theo rem s e e m s i m i l a r to express ions found for the con-
vergents of continued fract ions . F o r i n s t ance , the n u m e r a t o r of the n con-
vergent i s p = a p 1 + p 0. This equation s e e m s s i m i l a r to X = cX -

n n n—x n—& n n—x 
± X 0 but in the equations of T h e o r e m 1, + o r - s igns a r e used w h e r e a s n—u 
in the convergent express ion only the + sign a p p e a r s . 
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As a consequence of Theorem 1 we have 
Theorem 2. For every recurrent equation, U ,- = cU +U ., or 

Un+1 = c U n " U n 1 w n e r e c i s e v e n * there exists at least one Pell equation 
for which the sequence of either variable is governed by the given recurrent 
law. 

To prove this theorem we note from Theorem 1 that c = 2X^ whence 
Xi = c/2. When this value of Xj is substituted in the minimal equations 
DY2i = Xj ± 1 we have 

• ( « ) ' * 
DYi = m ± i 

Except for a trivial case9 

(t) § " ± i * • . 

therefore we can let 

( * ) 

2 
± 1 = D 

whence Yi = 1 and thus we have proved Theorem 2, If 

(s) f * > 
contains a square factor >1 there may be other solutions as demonstrated by 
problem 1. 

In equation (1), DY2 = X2 - ( - l ) n , we notice that when n = 2k then 

(13) DY|k = X | k - 1 

and when n = 2k + 1 then 

(14) D Y k+ l = X k + 1 + 1 > k = O . 1 ' 2 ' 3 ' ' " • 
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In order to study the sequence of every other term in a Pell equation we have 
Theorem 3. The sequence of every other X or Y in a Pell equation in 

recurrent. If the recurrent law for the Pell equation is U ^ = c U +U -
^ n+1 n n-1 

then the sequence of every other X or Y is 

U n + 3 = (o» + 2)Un + 1 - Un_x 

and if the recurrent law is U - = cU - U 1 then the sequence of every 
other X or Y is governed by 

U n + 3 " (c2 " 2 ) U n " U n - 1 ' 

We prove the two parts of Theorem 3 together using the ambiguous ± 
sign. 

U n + 1 = c U n ± U n -1 

then 

Un+2 = c U n + l ± U n 

and 

U n + 3 - c U n + 2 * U n + 1 

But 

therefore 

or 

Un+2 - c U n + l * U n 

U n + 3 = c ( c U n + l ± U n ) ± U n + l 

U a + 3 - c 2 U n + l * c U n * U n + 1 
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and 

Un +3 = < c 2 * 1 ) U n + l ± c U n 

But 

therefore 

±cU = ztu _,_- - U -n n+1 n-1 

Un+3 = ( o ^ D U ^ i U ^ - U ^ 

or 

( 1 5 ) U n + 3 = <c2 ± 2>Un+l - Un-1 ' 

With the derivation of equation (15) we have proved Theorem 3. For conven-
ience we let c2 ± 2 = c2 and then the equations of Theorem 3 become 

( 1 6 ) Uk+1 = C2Uk " U ? k - 1 ' U l = U ° ' U f l = U 2 

or 

Ui = Ul s W2 = U3 . 

The method of proof for Theorem 3 demonstrates that the properties of 
the sequences of Xfs or of Yfs in the Pell equations are simply the proper-
ties to be expected from considerations of the recurrent equations U 

n+1 
c U n ± U n - r 

EXAMPLES 
2 2 

Example 1, When D = 2 the minimal solution is 2Y* = X4 + 1, Yi = 
19 Xj = 1. From Theorem 1 we know that we must use the recurrent equa-
tion with the + sign and that the constant c = 2Xj = 2. Thus, the sequence 
of Xfs develops from X n + 1 = 2Xn +X _ r X0 = 1, X4 = 1. 
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X2 = 2Xi + X0 = 2 • 1 + 1 = 3 

X3 = 2X2 + Xj = 2 • 3 + 2 = 7 

X4 = 2X3 + X2 = 2 • 7 + 3 = 17 , 

e tc . Thus 

X = 1, 1, 3 , 7, 17, 4 1 , 9 9 , - • • . 

S imi la r ly for Y we have Y n + 1 = 2 Y + Y ^ Y0 = 0, Y* = 1. 

Y2 = 2Yi + Y0 = 2 • 1 + 0 = 2 

Y3 = 2Y2 + Yi = 2 • 2 + 1 = 5 

Y4 = 2Y3 + Y2 = 2 • 5 + 2 = 12 , 

e tc . , and 

Y = 0, 1, 2 , 5, 12, 29, 70,° " . 

Example 2. F o r D = 3 the min imal solution i s Xj = 2, Y* = 1 and 
2 2 

the min imal equation is 3Yi = XA - 1, whence the r e c u r r e n t law for D = 3 
is 

U n + l = c U n- U n- l ' c = 2X1 = 2 - 2 = 4 . 

Then 

X2 = 4Xt - X0 = 4 • 2 - 1 = 7 

X3 = 4X2 - Xj = 4 • 7 - 2 = 26 

X4 = 4X3 - X2 = 4 • 26 - 7 = 99, 

e tc . , and for the Yfs 

Y? = 4Yi - Y0 = 4 • 1 - 0. = 4 
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Y8; = 4Y2 - Yi = 4 • 4 - 1 = 15 

Y4 = 4Y3 - Y2 = 5 • 15 - 4 = 56, 

e tc . , and 

X = 1, 2, 7, 26, 9 9 , — 

and 

Y = 0, 1, 4 , 15, 5 6 , - • . 

PROBLEMS 

The following p rob lems i l l u s t r a t e the use of the t heo rems developed 

h e r e . Without knowledge of these t h e o r e m s , I bel ieve the p rob lems might be 

difficult to solve. 

P r o b l e m 1. The numbers 2024 and 32257 a r e consecutive values of 

one of the va r i ab les in a Pel l equation. What a r e the cor responding values of 

the o ther v a r i a b l e ? (There a r e two solut ions . ) 

P rob l em 2. F o r 8Y2 = X2 - 1 we have 

X = 1, 3 , 17, 9 9 , — 

Y = 0, 1, 6, 35, e o e 

and 

U _ = 6U - U - . n+1 n n - 1 

Find another Pe l l equation(s) for which this r e c u r r e n t law holds . 
P r o b l e m 3. P rove that 

Xi Y ± Y -
v - n n " 1 

n Yi 

and 
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v
 X * X n * \ - l 
n YtD 

Use the + sign if DY* = x\ + 1 and the - sign if DYi = X* - 1. Notice that 
in this problem the recurrent sequence of one variable is developed in terms 
of constants and the other variable. 

Problem 4. In a Pell equation where D = a 2 - 1 , a > l , prove that 
X ± X 1 = 0 m.od (Xj i 1) using corresponding signs on each side of the 
congruence. 

Problem 5. In Pell equations if DYj = xf + 1, prove: 

E X , i + X - Xj - 1 x. = _s±i—s—i__ 
j=l 

and 

3=1 

c = 2Xi 

Note that if c = 1 and the X?s are Lucas numbers and the Yfs are Fibonacci 
numbers then we have the summation equations for the Lucas and Fibonacci 

2 2 
sequences. If DYj = Xj - 1, show that the comparable summations are 

E x = ^ I ' V * 1 " 1 
j c - 2 

i r% Y ^ - Y -Yi 
L Y

3
 = n + 1

c , n
2 \ 0 = 2 X ^ 1 . 

5 = 1 

Problem 6, In each of the following equations find recurrent sequences 
of rational xfs such that y is integral. The ambiguous sign is used to avoid 
negative roots. 
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a) 3x2 ± 4x + 1 = y2 

b) 3x2 ± 5x + 2 = y2 

c) 2x2 ± 6x + 5 = y2 

d) 6x2 ± 5x + 1 = y2 

EPILOGUE 

In this part of the paper, some terms and notations are introduced which 
were found to be convenient, 

a) In the Pell equation, DY2 = X2 - ( - l ) n , n = 0 , l , 2 , 3 / , e , we no-
tice that as n increases, 1 is alternately subtracted and added to the X2 

term. Thus the equation is referred to as an alternating equation. For the 
equation DY^ = X^ - 1, n = 0 , l , 2 , 3 , - - - , l i s always subtracted from X2 

and is referred to as non-alternating. The term alternating Pell equation im-
2 2 

plies the minimal equation DYj = Xt + 1 and the recurrent law U - = cU 
+ U - , whereas the term non-altemating Pell equation implies DYf = x\ - 1 
and the recurrent law U - = cU - U - . I n this connection it is interesting 
to note that in recurrent equations where the nfs are negative, the neighbor-
ing terms in the sequence developed from U - = U - - cU have opposite 
signs and thus the signs in the sequence alternate. If U - = cU - U - and 
n < 1, the neighboring terms of the sequence have the same signs and the se-
quence is non-alternating. 

The use of non-positive nfs in the equations of Theorem 1 leads to the 
conjugate solutions of the Pell equations. 

b) In the recurrent equation U - = cU +U ., ,c > 1 is associated with 
n+1 n n-1 -

the + sign preceding the U 1 term and in the equation U - =.. cUfl - U -
c>l is associated with the - sign preceding the U - term. A convenient no-
tation for these recurrent equations is c + and c~. For example 6+ implies 
U ± 1 = 6 U +U - and 4r implies U _,, = 4U - U -. n+1 n n-1 ^ n+1 n n-1 

Since c + or c" indicates the manner in which the recurrent sequence 
is developed they are called the indicator, I, of the sequence. 

If a and /3 are the first two terms of a sequence, then the development 
of the sequence is completely determined by the indicator and the first two 
terms as l(a,0). For example, if I = 3 + , a = 2, 0 = 3 then 3 + , (2f3) d e -
fines the sequence and implies U - = 3U +U - , U0 = 2, Uj = 3. 
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Throughout my notes I have used this notation because of its convenience and 

brevity. 
Since each of the Pell equations, (1) and (2) have a unique recurrent law 

for a given D then it follows that they have a unique indicator but a given indi-
cator does not necessarily determine a Pell equation uniquely. 

c) If a sequence is determined by I, (#,j8) and a,j3 have a common 
factor, f, then all terms of the sequence contain this factor. Let a = fat 

and jS = fft then 

I, (<*,/3) = I, tfori.fft) = 1 , fiflufo) . 

The n term of the sequence can be developed from I, {ai9^) to the n 
term which is then multiplied by f and by this procedure we can use smaller 

numbers. 
d) Applying these concepts to the Pell equations we have for the general 

recurrent solution 

X = I, (1, Xt) 

Y = I, Yi(0,l) 

where I = 2Xt if DY? = x\ + 1 and I = 2Xj if DYi = X^ - 1. 
We see that in general for any Pell equation Y s 0 mod Y4. 
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