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1, INTRODUCTION 

A composition of n is an ordered partition of n; that is , a representa-
tion of n as the sum of positive integers with regard to order. For example, 
4 has the eight compositions 

4 = 3 + 1 = 1 + 3 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 
= 1 + 1 + 1 + 1 . 

Some elementary properties of compositions have been given by Riordan [12, 
124-125], and a more extensive study has been made by MacMahon [9, 150-
216]. Isolated examples of composition formulas involving Fibonacci numbers 
have appeared sporadically in the literature (see [11], [ 13] , [14], [15], [16]). 
In an earlier paper [6] the authors established a general composition formula 
and its inversion of which the above are particular examples. This formula 
generalized a result of Moser and Whitney [11], and from it followed a num-
ber of further results. In this paper we review the previous results , continue 
their development, and show how these techniques can be used to prove cer-
tain Fibonacci identities. 

2. PREVIOUS RESULTS 

From direct expansion we find that the enumerator of compositions with 
exactly k parts is (x + x2 + • • •) . That i s , the coefficient of x in the 
resulting series is the number of compositions of n with k parts. If a sum-
mand j is given weight w., then 

(Wlx + w2x2 + • • • ) k = [W(x)]k 

maybe termed the enumerator of weighted k-part compositions. To obtain an 
explicit representation, put 
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oo oo 

J2.1) C(x,y;w) = ^ [ W ( K ) ] k y k = T _ | W ) = ] T Cn k<w)x\k , 
k=0 k,n=0 

where w = {wi ,w2> , , °} . Using the formula for derivatives of composite func-
tions (see [12, p. 36]), 

7rk(n) 

where the sum is extended over all k-part partitions of n; that i s , over all 
solutions of ki + 2k2 + • • • + nk = n such that kj + • • • + kn = k. Since the 
number of distinct compositions obtainable from the above partition is the co-
efficient in (2.2), the omission of the coefficient calls for summation over 
compositions. We write 

£ 0.3) cQk(w) = 2 ^ w a w & 2 • • • w a k (n,k > 0) 
rk(n) 

where y, (n) indicates summation over all k-part compositions â  + • • • + a, 
of n. Specialize this by letting 

oo 

c(x) H c(x,i;w) = T^Q =2^c
n<w)xn (2.4) 

j- - vv \ A ; 

in which 
oo ' ' 

3 n ( w ) E Cn = Z w C n k ( w ) = jLj' (2.5) cn(w) = c^ = 7 ^ c
n ^ w ) = 7 ; W o " " w

a (n > 0) , 
k=l y(n) 
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where y(n) indicates summation over all compositions aj + • • • + a. of n, 
the number of summands k in the composition being variable. Equations (2.4) 
and (2.5) were given by Moser and Whitney [11]. 

To obtain an inversion formula for (2.5), note that 

-1 * ^ ' V ( - l ) k c W(x) = C(x) = 1 + / \ / JL-1) ca 

n=l \ y(n) u 
Hence 

*n = X/"3 (2.6) -w„ = ? (-Dkca • . . c . (n > 0) 
JLmd &i ak 
Mn) 

To help motivate the above, we note that it is shown in [5] and [7] that if 
a pair of rabbits produces w pairs of offspring at the n time point, and 

n th 
their offspring do likewise, then the total number of pairs born at the n time 
point is c . We shall see below in example (3d) that our results generalize the 
famous rabbit reproduction problem which led Leonardo of Pisa to discover the 
Fibonacci numbers originally. 

3. EXAMPLES AND ILLUSTRATIONS 

In this section we specialize the above results, obtaining the known 
instances of Fibonacci related composition formulas appearing in the l i terature, 
as well as some other results. 

Define the Fibonacci numbers F by 
n J 

Fi = F2 = 1. F n + 2 = F n + 1 + F Q ( a i l ) , 

and the Lucas numbers L by 

Li = 1, L2 = 3, L ^ = L ^ + L (n 2 1). 
1 l n+2 n+1 n 

We make use of several standard generating functions for Fibonacci and Lucas 
numbers, for which we refer the reader to [2]. 
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(3a) Letting w = 1 (n >. 1), so that 

W(x) = x + x2 + • • • = x / ( l - x), 

and using the convention I j n = 0 if k > n , we have 

c(x vw) = i + yW(x) . = xy 
Mx,y,w) 1 + x l y w f e ) 1 - x(1 + y) 

( 3 . 1 ) °° oo oo 

E ^/i _,_ \ n \ ^ \ V n \ n+1 k+1 

x (l + y)xy =2^2^{k)x y ' 

so that 

(3.2) c^w) •S-(l:l) 

is the number of compositions of n into k parts . This appears in [12], and 
can be verified by combinatorial arguments. 

It follows that 

(3.3) ? A = c (w) = > c , » = > l " : t l = (1 + D n " 1 = 2 n - 1 

OO OO 

r(n) k=0 k=l 

is the total number of compositions of n. For example, 4 has the 8 = 24"1 

compositions mentioned in the Introduction. 
(3b) Put w = n, which gives 

W(x) = x + 2x2 + 3x3 + • • • = x / ( l - x)2 . 

In this case, 
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oo 

C(X) - 1 = £—— = V V xn . 
1 . ^ 4 . ^ *—* 2 l 1 1 - 3x + x2 

n=l 

Then (2.5) yields 

i3A) °n = Zj *** ''' ak = F2n • 
r(n) 

which has been given by Moser and Whitney [11], and proposed as a problem 
in this Quarterly [16]. As an example, for n = 4 we have 

c4 = 4 + 2(3 • 1) + 2 • 2 + 3(2 • 1 • 1) + 1 . 1 • 1 • 1 = 21 = F8. 

(3c) Set 

Wj = w2 = 1, w = 0 (n > 3) , 

so that W(x) = x + x2, Then 

OO 

c« - i = x + x2 TF/ , 
! _ v _ ^2 Z ^ n+1 1 - X - X^ ., 

n=l 

and using (2.5) we get 

s (3'5) Cn = Z^ X = Fn+1 ' 
r (n ) ;a<2 

since in any composition with a. > 2, wa. = 0 annihilates the summand. 
Thus the number of compositions of n into l f s and 2fs is F -. This was 
proposed by Moser as Problem B-5 [14], 

(3d) Let wj = 0 and w = 1 (n>_ 2), giving 
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W(x) = x2(l + x + •••) = x2 / ( l - x) . 

1 - * - * * n=l 
Z v ^ • 

Then 

C(x) - 1 = 

so that by (2.5) we have 

(3.6) c = / 1 = F - . 
n I / n-1 

7(n);a>2 

Thus the number of compositions of n into parts greater than a unity is F -. 

In this case we have 

C^T^ ~ 1 = 1 - xay
+ xy) = * 2 y ^ ( l + x y ) J 

j=0 

j=0i=0 v / n=2k=l 

so that by (2.3) 

(3.7) cnk(w) •-S^-t'-i1) r k (n) ;a .> l 

is the number of compositions of n into k parts , each of which is greater 
than one. Then (2.5) shows 

(3.8) 
k=l x ' 



1969] COMPOSITIONS AND FIBONACCI NUMBERS 259 

which was f i r s t shown by Lucas [ 8, p. 186JJ. 

(3e) If 

W(x) = x + x3 + x5 + • • • = x / ( l - x 2 ) , 

then a calculation s i m i l a r to that in (3d) shows 

(3.9) cn k(w) z i-K+.v! 
y, (n);a. odd 

to be the number of k -pa r t composi t ions of n into odd p a r t s . Since 

(3.10) cn(w) Z '•Zfc-')-', 
y(n) ;a . odd k=l 

we may s ta te that the number of composi t ions of n into odd p a r t s i s F . 

(3f) Put 

ww = - = 7 Fo„ o xn 
OO 

z» 2 Z~J 2n-2 1 - 3x + x1 -
n=l 

so that 

•-T^E-Z'^*' C(x) 
n=2 

Then by (2.5) 

z , n -2 
(3.11) cn(w) = l_j F

2 a i - 2 - - - F 2 a k - 2 = 3 <n * 2> 
y(n);a >1 
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The inverse relation given by (2.6) is 

-F2n_2= £ <-W4"a-'-3ak"a= X ) <-1)k3n"2k < ^ 2 ) 
7(n ) ; a> l y (n ) ; a> l 

J J 

Since the summand depends only on the number of integers in the composition, 
we may use the value of c , (w) in (3d) to get 

(3'12) F2n = S ("1)k"1 (k : l ) 3n+1"2k (n " 1] ' 
k=l 

which was proposed as Problem H-83 in this Quarterly [17]. 
(3g) We shall establish some further Fibonacci identities via composi-

tion formulas. Let 

W(x) = x2 + 4x3 + 42X4 + • •. = x2/( l - 4x) 

so that 

C(x) 

Then with (2.5) we get 

<3'13> \ F 3n-3 

_ 1 - * 
"" X — — — — — — — — — 

1 - 4x - x2 

= E 4ai_2-
r ( n ) ; a > l 

oo 

n=l 
F 3n-3 X • 

-2 „ak-2 __ % ^n_2k 4 
y(n ) ; a> l 

J 

Again using the value for c , (w) in (3d), we find 

IF =yVn-k-lX\4
n-

2 3n-3 £.4 I k - 1 / 4 

k=l x ' 

(3.14) " " - v i " - - - - i ,"-2k 
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We can generalize this as follows. Fi rs t let s be odd, and set 

x2 \~\n-2 n 
= 1 - Lx = Z^Ls X W(x) 

i - x. . 
S n=2 

Then 

C(x) - 1 = 
1 - L x - x2 *' s -s n=l 

= FT^ F s (n- l ) X n 

We then get 

F s ( n - 1 ) / F s ~ 2 ^ L s " 2 

y(n);a.>l 

so using (3d) we have 

D -̂Lfc^H F
S ( n - - / F ~ = > . r . : " T i | L r 2 k (sodd) 

k=l 

For even s, a similar calculation with 

1 - L x ^ j s 
S n=2 

W(x) 

shows 

^v*s=2>k-1(n
1; - ; 1 )c2 k «•--> 
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The even and odd cases can be combined into 

<«=> ».h-i ) /*.-E,-u f c J ) U"u("S1k 
This result was recently posed as a problem [IB], 

We conclude this section by noting that Hoggatt [5], in connection with a 
study of the reproduction patterns of mathematical Fibonacci rabbits, has 
exhibited a number of generating functions W(x) which have particularly con-
venient corresponding gene rating functions C(x). Each of these has the natural 
combinatorial interpretation provided by (2.5) and (2.6). 

4. RELATIONS INVOLVING FIBONACCI GENERALIZATIONS 

In this section we consider composition formulas involving three distinct 
generalizations of the Fibonacci numbers. Most of these reduce to results 
contained in Section 3. 

(4a) Define the Fibonacci polynomials f (t) by 

fi(t) = 1, ,f2(t) = t, and fn+2(t) = tfn+1(t) + fn(t) ( n ^ l ) . 

It follows that f (1) = F . It can also be easily verified that the generating n n J & & 
function for these polynomials is 

(4.1) - = > j f (t) x n 

Letting W(x) equal to (4.1), we find 

C W - 1 = = > • f (t + Dx11 

1 - (t + l)x - x2
 n = Q 

OO 

Then (2.5) yields 
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y(n) 

As a special case given in [6] we get for t = 1 that 

(4.3) P = / • F ••• F 
n L^j &I a k 

fa) 

where P = f (2) is the Pell sequence discussed by Lucas [8 ] . 
(4b) Miles [10] has investigated the properties of the r-generalized 

Fibonacci numbers f defined for r ^ 1 by n,r J 

f = 0 (0 < n < r - 2), f - = 1 9 n9r r - l 9 r 
(4.4) 

r ' 
(n > r) . f = > f • 

n ' r ' ^ n-j ,r 3=1 

If follows that f - = 1 and f Q = F . The numbers f Q are the so-called 
n$± n ?z n n5o 

Tribonacci numbers studied by Feinberg [1]. It is not difficult to see that the 
generating function for the f is 

n,r 

(4.5) _ — _ 2 E _ = \ " f x
n 

-, 2 r / J n5r 
1 - X - X4 - • • • - X ^—*f 

n=r- l 

oo 

E 
For our first result, let W,(x) = x + x2 + • • • + x . Then 

OO 

/ J n+r-1 C(x) = 1 + 
n=l 

But it follows from (2.5) that c (w) is the number of compositions of n into 
parts not greater than r. Thus we see 
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(4.6) 7 1 = f A , 
Zmmed n+r - l , r 

y(n);a.^r 

which reduces to (3c) by putting r = 2. By letting r = 3 we also obtain a 
partial solution to Problem B-96 in this Quarterly [15]. 

We may get f in terms of a composition formula involving the n9r 
f. 1 in the following manner. Let I $r-~x 

r 
W(x) = — 

1 - x - • • • - x 0 
n=2 

oo 

-1 = ^ « t f n - 2 , r - l X 

Then 

oo 

C(x) - 1 = - = > f - -x n 

i r / J n - l , r - l 1 - X - • • • - X -
n=l 

Then from (2.5) we get 

(4.7) f = / f 0 - ••• f 
n,r JL-J aj[-2,r-l a k - 2 , r - l » 

y(n+l) 

where f = 0 if n < 0. We note that for r = 2, (4.7) becomes (3.6). The n,r 
inversion relation (2.6) gives 

- f n - l , r - l Z~d ( _ 1 ) f a i - l , r *' * f a k - l , r » (4.8) 
I l - X J J L - J -

y(n+D 

giving a formula for f - in terms of the f. B & n , r - l i ,r 
(4c) If w. = 0 (1 ^ j < r ) , w. = 1 (j ^ r ) , then W(x) = x x / ( l - x). 

Now Hoggatt [4] has shown 



1969] COMPOSITIONS AND FIBONACCI NUMBERS 265 

(4.9) — = / u(n;p - l , l ) x n , 
1 - x - xp *—* n=0 

where the u(n;p,q) are the generalized Fibonacci numbers introduced by 
Harris and Styles [3] defined by 

(4.10) u(n;p,q) = >T P ^ ) fo ^ 0) . 
i=0 

Then 

C(x) - 1 = x ~ 
1 - x - x 

n=r 

= y ^u(n-r;r- l ' , l )xn , 

so that 

E (4.11) cn(w) = ^ * = u(Q-r ; r - l f l ) 
y(n) ;a^r 

is the number of compositions of n into parts greater than or equal to r. It 
follow 
(3.6). 
follows from (4.9) that u(n; l , l ) = F + - , so that setting r = 2 in (4.11) yields 

On the other hand, letting W(x) = C(x) becomes (4.9) and we 
see 

E (4.12) ? 1 = u(n;p- 1,1) 
y(n);a = l ,p 

is the number of compositions of n into l f s and pfs . This reduces to (3.5) 
by letting r = 2. 
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REFERENCES 

1. . Mark Feinberg, "New Slants," Fibonacci Quarterly 2(1964), 223-227. 
2. H. W. Gould, "Generating Functions for Products of Powers of Fibonacci 

Numbers," Fibonacci Quarterly 1(1963), No. 2, 1-16. 
3. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Num-

b e r s , " Fibona^cijQua^ter^ 277-289. 
4. V. E. Hoggatt, J r . , "A New Angle on PascaPs Triangle," Fibonacci 

Quarterly 6(1968), 221-234. 
5. V. E. Hoggatt, J r . / 'Genera l i zed Rabbits for Generalized Fibonacci 

Numbers," to appear., Fibonacci Quarterly. 
6. V. E. Hoggatt, J r . , and D. A. Lind, "Fibonacci and Binomial Proper-

ties of Weighted Compositions," J. of Combinatorial Theory, 4(1968), 
121-124. 

7. V. E. Hoggatt, J r . , and D. A. Lind, "The Dying Rabbit Problem," to 
appear, Fibonacci Quarterly. 

8. E. Lucas, Theorie des Fonctions Numeriques Simplement Periodique," 
Amer. J. of Math, 1(1878), 184-240 and 289-321. 

9. P. A. MacMahon, Combinatory Analysis (2 Vols.) , Chelsea, New York, 
1960. 

10. E. P. Miles, J r . , "Generalized Fibonacci Numbers and Associated 
Matr ices ," Amer. Math. Monthly, 67(1960), 745-752. 

11. L. Mose randE . L. Whitney, "Weighted Compositions," Can. Math. Bull. 
4(1961), 39-43. 

12. John Riordan, An Introduction to Combinatorial Analysis, Wiley, I960* 
13. Henry Winthrop, "Time Generated Compositions Yield Fibonacci Num-

b e r s , " Fibonacci Quarterly 3(1965), 131-134. 
14. Problem B-5, Fibonacci Quarterly 1(1963) , 74. 
15. Problem B-96, Fibonacci Quarterly 4(1966), 283. 
16. Problem H-50, Fibonacci Quarterly 2(1964), 304. 
17. Problem H-83, Fibonacci Quarterly 4(1966), 57. 
18. Problem H-135, Fibonacci Quarterly 6(1968), 143-144. 

• • • • * 


