ON DETERMINANTS INVOLVING GENERALIZED FIBONACCI NUMBERS

D. V. JAISWAL

Holkar Science College, Indore, India

In this note we shall evaluate some determinants whose elements are the Generalized Fibonacci numbers, T_{n}, defined by the relations:

$$
\mathrm{T}_{1}=\mathrm{a}, \quad \mathrm{~T}_{2}=\mathrm{b}, \quad \mathrm{~T}_{\mathrm{n}+2}=\mathrm{T}_{\mathrm{n}+1}+\mathrm{T}_{\mathrm{n}}
$$

We can express

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{C} \alpha^{\mathrm{n}}+\mathrm{D} \beta^{\mathrm{n}}
$$

where α, β are the roots of the equation $\mathrm{X}^{2}-\mathrm{X}-1=0$, and C and D are constants. The Fibonacci numbers, F_{n}, are obtained by taking $\mathrm{a}=\mathrm{b}=1$, and the Lucas numbers, L_{n}, by taking $a=1, b=3$.

We shall make use of the following well known identities:
(i)

$$
\mathrm{F}_{-\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}},
$$

(ii)

$$
\mathrm{T}_{\mathrm{m}+\mathrm{n}}=\mathrm{T}_{\mathrm{m}} \mathrm{~F}_{\mathrm{n}+1}+\mathrm{T}_{\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}}
$$

$$
\begin{equation*}
T_{n+1}^{2}-T_{n-1}^{2}=a T_{2 n-2}+b T_{2 n-1} \tag{iii}
\end{equation*}
$$

(iv)

$$
\mathrm{T}_{\mathrm{m}-1} \mathrm{~T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{m}} \mathrm{~T}_{\mathrm{n}-1}=(-1)^{\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}-\mathrm{m}} \mathrm{D}
$$

and shall also use the formulae,

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}+\mathrm{r}} \mathrm{~F}_{\mathrm{n}+\mathrm{r}}+(-1)^{\mathrm{r}+1_{2}} \mathrm{~T}_{\mathrm{m}} \mathrm{~F}_{\mathrm{n}}=\mathrm{T}_{\mathrm{m}+\mathrm{n}+\mathrm{r}} \mathrm{~F}_{\mathrm{r}} \tag{v}
\end{equation*}
$$

The truth of this formulae can be established, either by induction over r, or by substituting the values of F_{n} and T_{n} in terms of α and β.

1. THIRD-ORDER DETERMINANT

We shall show that

$$
\left|\begin{array}{ccc}
T_{p} & T_{p+m} & T_{p+m+n} \tag{1.1}\\
T_{q} & T_{q+m} & T_{q+m+n} \\
T_{r} & T_{r+m} & T_{r+m+n}
\end{array}\right|=0
$$

for all integers p, q, r, m, and n. Using (ii), we can write

$$
\mathrm{T}_{\mathrm{k}+\mathrm{m}+\mathrm{n}}=\mathrm{T}_{\mathrm{k}+\mathrm{m}} \mathrm{~F}_{\mathrm{n}+1}+\mathrm{T}_{\mathrm{k}+\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}}, \quad(\mathrm{k}=\mathrm{p}, \mathrm{q}, \mathrm{r})
$$

hence the determinant on the left-hand side can be written as

$$
F_{n+1}\left|\begin{array}{ccc}
T_{p} & T_{p+m} & T_{p+m} \\
T_{q} & T_{q+m} & T_{q+m} \\
T_{r} & T_{r+m} & T_{r+m}
\end{array}\right|+F_{n}\left|\begin{array}{ccc}
T_{p} & T_{p+m} & T_{p+m-1} \\
T_{q} & T_{q+m} & T_{q+m-1} \\
T_{r} & T_{r+m} & T_{r+m-1}
\end{array}\right|
$$

Obviously the first determinant vanishes. The second, on subtracting the elements of the 3 rd column from those of the 2 nd, reduces to

$$
F_{n}\left|\begin{array}{ccc}
T_{p} & T_{p+m-2} & T_{p+m-1} \\
T_{q} & T_{q+m-2} & T_{q+m-1} \\
T_{r} & T_{r+m-2} & T_{r+m-1}
\end{array}\right|
$$

Now on subtracting the elements of the 2 nd column from the 3 rd, we obtain

$$
F_{n}\left|\begin{array}{ccc}
T_{p} & T_{p+m-2} & T_{p+m-3} \\
T_{q} & T_{q+m-2} & T_{q+m-3} \\
T_{r} & T_{r+m-2} & T_{r+m-3}
\end{array}\right|
$$

Thus alternately subtracting the 2 nd and the 3 rd columns from one another, the process can be continued to reduce the suffixes. At a certain stage, if m is even, 1 st and 2 nd columns will become identical; and if m is odd, 1 st and 3rd columns will become identical. Hence for every value of m, even or odd, the determinant vanishes.
2. EVALUATION OF THE DETERMINANT

We shall now evaluate the determinant,

$$
\Delta \equiv\left|\begin{array}{lll}
T_{p}+k & T_{p+m}+k & T_{p+m+n}+k \\
T_{q}+k & T_{q+m}+k & T_{q+m+n}+k \\
T_{r}+k & T_{r+m}+k & T_{r+m+n}+k
\end{array}\right|
$$

where k is an arbitrary constant, and p, q, r, m, and n are integers.
On writing the determinant as the sum of eight determinants, and using (1.1) and the property that a determinant vanishes if two columns are identical, we obtain

$$
\begin{aligned}
\Delta & \equiv\left|\begin{array}{ccc}
T_{p} & T_{p+m} & k \\
T_{q} & T_{q+m} & k \\
T_{r} & T_{r+m} & k
\end{array}\right|+\mid \cdots \cdot \\
& =K \cdot F_{m}\left|\begin{array}{ll}
\cdots
\end{array}\right|+\left|\begin{array}{ll}
\cdots \\
T_{p} & T_{p-1} \\
T_{q} & T_{q-1} \\
T_{r} & T_{r-1} \\
T_{r}
\end{array}\right|+\cdots+\cdots
\end{aligned}
$$

The first determinant by using (iv) can be written as

$$
=D \cdot K \cdot F_{m}\left[(-1)^{r-1} F_{q-r}+(-1)^{p-1} F_{r-p}+(-1)^{q-1} F_{p-q}\right]
$$

Hence
(2.1)

$$
\begin{gathered}
\Delta=\mathrm{D} \cdot \mathrm{~K}\left[(-1)^{\mathrm{q}_{\mathrm{F}}} \mathrm{r}_{\mathrm{r}-\mathrm{q}}-(-1)^{\mathrm{p}_{\mathrm{F}}} \mathrm{r}-\mathrm{p}+(-1)^{\mathrm{p}_{\mathrm{F}}} \mathrm{~F}_{\mathrm{q}-\mathrm{p}}\right] \times \\
\times\left[\mathrm{F}_{\mathrm{m}}-\mathrm{F}_{\mathrm{m}+\mathrm{n}}+(-1)^{\mathrm{m}_{\mathrm{F}}} \mathrm{~F}_{\mathrm{n}}\right]
\end{gathered}
$$

3. FOURTH-ORDER DETERMINANTS

We shall now evaluate the determinant,

$$
\Delta \equiv\left|\begin{array}{llll}
T_{n+3} & T_{n+2} & T_{n+1} & T_{n} \\
T_{n+2} & T_{n+3} & T_{n} & T_{n+1} \\
T_{n+1} & T_{n} & T_{n+3} & T_{n+2} \\
T_{n} & T_{n+1} & T_{n+2} & T_{n+3}
\end{array}\right|
$$

It can be easily shown that the determinant,

$$
\left|\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right|=\left[(a+b)^{2}-(c+d)^{2}\right] \cdot\left[(a-b)^{2}-(c-d)^{2}\right]
$$

Hence we obtain

$$
\begin{align*}
\Delta= & {\left[\left(T_{n+3}+T_{n+2}\right)^{2}-\left(T_{n+1}+T_{n}\right)^{2}\right] \times } \\
& \times\left[\left(T_{n+3}-T_{n+2}\right)^{2}-\left(T_{n+1}-T_{n}\right)^{2}\right] \tag{3.1}\\
= & \left(T_{n+4}^{2}-T_{n+2}^{2}\right) \cdot\left(T_{n+1}^{2}-T_{n-1}^{2}\right) \\
= & \left(a T_{2 n+4}+b T_{2 n+5}\right) \cdot\left(a T_{2 n-2}+b T_{2 n-1}\right)
\end{align*}
$$

on using (iii).

4. EVALUATING THE CIRCULANT

We now evaluate the circulant,

$$
\left|\begin{array}{llll}
T_{n} & T_{n+k} & \cdots & T_{n+(m-1) k} \\
T_{n+(m-1) k} & T_{n} & \cdots & T_{n+(m-2) k} \\
\cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \cdots \cdots \cdots \\
T_{n+k} & T_{n+2 k} & \cdots & T_{n}
\end{array}\right|
$$

Let w be any one of the m numbers

$$
\mathrm{w}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{\mathrm{~m}}+\mathrm{i} \sin \frac{2 \mathrm{r} \pi}{\mathrm{~m}}, \quad(\mathrm{r}=1,2,3, \cdots, \mathrm{~m})
$$

so that $w^{m}=1$, and

$$
\mathrm{S}_{\mathrm{m}} \equiv \mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \mathrm{w}_{4} \quad \cdots \quad \mathrm{w}_{\mathrm{m}}=(-1) \cdot(-1)^{\mathrm{m}}=(-1)^{\mathrm{m}+1}
$$

$$
\begin{aligned}
& \mathrm{S}_{1} \equiv \mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}+\cdots+\mathrm{w}_{\mathrm{m}}=0 \\
& \mathrm{~S}_{2} \equiv \mathrm{w}_{1} \mathrm{w}_{2}+\cdots \quad=0 \\
& \text {.. }
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\prod_{r=1}^{m}\left(y-w_{r} z\right)=y^{m}-z^{m} \tag{4.1}
\end{equation*}
$$

Therefore as discussed in [8],

$$
\begin{aligned}
\Delta & =\prod_{r=1}^{m}\left(T_{n}+w_{r} T_{n+k}+\cdots+w_{r}^{m-1} T_{n+(m-1) k}\right) \\
& =\prod_{r=1}^{m}\left[\frac{C \alpha^{n}\left(1-w_{r}^{m} \alpha^{m k}\right)}{1-w_{r} \alpha^{k}}+\frac{D \beta^{n}\left(1-w_{r}^{m} \beta^{m k}\right)}{1-w_{r} \beta^{k}}\right] \\
& =\prod_{r=1}^{m}\left[\frac{\left(T_{n}-T_{n+m k}\right)-(-1)^{k} w_{r}\left(T_{n-k}-T_{n+(m-1) k}\right)}{\left(1-w_{r} \alpha^{k}\right)\left(1-w_{r} \beta^{k}\right)}\right] \\
& =\frac{\left(T_{n}-T_{n+m k}\right)^{m}-(-1)^{m k}\left(T_{n-k}-T_{n+(m-1) k}\right)^{m}}{\left(1-\alpha^{m k}\right)\left(1-\beta^{m k}\right)} \\
& =\frac{\left(T_{n}-T_{n+m k}\right)^{m}-(-1)^{m k}\left(T_{n-k}-T_{n+(m-1) k}\right)^{m}}{1+(-1)^{m k}-L_{m k}}
\end{aligned}
$$

5. EACH ELEMENT IS THE PRODUCT OF TWO NUMBERS

We shall evaluate

$$
\Delta \equiv\left|\begin{array}{lll}
F_{n} \cdot T_{m+n} & F_{n+p} & \cdot T_{m+n+p} \\
F_{n+r} \cdot T_{m+n+r} & F_{n+r+p} \cdot T_{m+n+r+p} & F_{n+r+p+q} \cdot T_{m+n+p+q} \\
F_{n+s} \cdot T_{m+n+s} & F_{n+s+p} \cdot T_{m+n+s+p} & F_{n+s+p+q} \cdot T_{m+n+s+p+q}
\end{array}\right|
$$

and shall show that $|\Delta|$ is independent of n.
On using (v), we can write

$$
\mathrm{F}_{\mathrm{n}+\mathrm{p}} \mathrm{~T}_{\mathrm{m}+\mathrm{n}+\mathrm{p}}+(-1)^{\mathrm{p}+1} \mathrm{~F}_{\mathrm{n}} \mathrm{~T}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{p}} \mathrm{~T}_{\mathrm{m}+2 \mathrm{n}+\mathrm{p}}
$$

Hence multiplying 1 st column by $(-1)^{p+1},(-1)^{p+q+1}$, and adding respectively to the 2 nd and 3rd columns, we obtain

$$
\begin{aligned}
\Delta & =F_{p} F_{p+q}\left|\begin{array}{lll}
F_{n} & \cdot T_{m+n} & T_{m+2 n+p} \\
F_{n+r} \cdot T_{m+n+r} & T_{m+2 n+p+q} \\
F_{n+s} \cdot T_{m+n+s} & T_{m+2 n+2 s+p} & T_{m+2 n+2 s+p+q}
\end{array}\right| \\
& =F_{p} F_{p+q} F_{q}\left|\begin{array}{lll}
& T_{m+2 n+2 r+p+q} \\
F_{n} & T_{m+n} & T_{m+2 n+p} \\
F_{n+r} T_{m+n+r} & T_{m+2 n+2 r+p} & T_{m+2 n+p-1} \\
F_{n+s} T_{m+n+s} & T_{m+2 n+2 s+p} & T_{m+2 n+2 s+p-1}
\end{array}\right|
\end{aligned}
$$

on using (ii).
Now alternately subtracting the 3rd and 2nd columns from one another, we can write

$$
\begin{aligned}
& \Delta=F_{p} F_{q} F_{p+q}(-1)^{m+p}\left|\begin{array}{lll}
F_{n} \cdot T_{m+n} & T_{0} & T_{1} \\
F_{n+r} \cdot T_{m+n+r} & T_{2 r} & T_{2 r+1} \\
F_{n+s} \cdot T_{m+n+s} & T_{2 s} & T_{2 s+1}
\end{array}\right| \\
&=F_{p} F_{q} F_{p+q}(-1)^{m+p} \cdot D\left[F_{n} T_{m+n} \dot{F}_{2 s-2 r}-F_{n+r} T_{m+n+r} F_{2 s}+\right. \\
&\left.+F_{n+s} T_{m+n+s} F_{2 r}\right]
\end{aligned}
$$

on using (iv).
Now on expressing the numbers in terms of α and β, we can write

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{n}+\mathrm{S}} \mathrm{~T}_{\mathrm{m}+\mathrm{n}+\mathrm{S}} \mathrm{~F}_{2 \mathrm{r}}=\frac{1}{5}\left[\mathrm{~T}_{\mathrm{m}+2 \mathrm{n}+2 \mathrm{~s}+2 \mathrm{r}}-\mathrm{T}_{\mathrm{m}+2 \mathrm{n}+2 \mathrm{~s}-2 \mathrm{r}}+\right. \\
\left.+(-1)^{\mathrm{n}+\mathrm{S}}\left(\mathrm{~T}_{\mathrm{m}-2 \mathrm{r}}-\mathrm{T}_{\mathrm{m}+2 \mathrm{r}}\right)\right]
\end{array}
$$

Hence we have

$$
\begin{align*}
\Delta= & \frac{1}{5} F_{p} F_{q} F_{p+q}(-1)^{m+n+p} \cdot D\left[\left(T_{m+2 r-2 s}-T_{m+2 s-2 r}\right)+\right. \tag{5.1}\\
& \left.\left.+(-1)^{s}\left(T_{m-2 r}-T_{m+2 r}\right)-(-1)^{r}{ }^{r} T_{m-2 s}-T_{m+2 s}\right)\right]
\end{align*}
$$

Also it is obvious that $|\Delta|$ is independent of n.
6. ONCE AGAIN THE FOURTH ORDER

We shall now show that

for all integers p, q, r, s, m, a, b, and c.
Multiplying 1st column by $(-1)^{\mathrm{a}+1},(-1)^{\mathrm{b}+1},(-1)^{\mathrm{c}+1}$ and adding to the 2 nd , 3rd, and 4th columns, respectively; and using the formula (v), the determinant reduces to

$$
F_{a} \cdot F_{b} \cdot F_{c} \cdot\left|\begin{array}{cccc}
F_{p} T_{p+m} & T_{2 p+m+a} & T_{2 p+m+b} & T_{2 p+m+c} \\
F_{q^{2}} T_{q+m} & T_{2 q+m+a} & T_{2 q+m+b} & T_{2 q+m+c} \\
F_{r} T_{r+m} & T_{2 r+m+a} & T_{2 r+m+b} & T_{2 r+m+c} \\
F_{s} T_{s+m} & T_{2 s+m+a} & T_{2 s+m+b} & T_{2 s+m+c}
\end{array}\right|
$$

Expanding along the 1st column and using the result (1.1), the determinant vanishes. This can be generalized for the $\mathrm{n}^{\text {th }}$ order determinants.

7. PARTICULAR CASES

A. Let us take $\mathrm{a}=\mathrm{b}=1$, then $\mathrm{T}_{\mathrm{n}} \equiv \mathrm{F}_{\mathrm{n}}$ and $\mathrm{D}=-1$.
(i) On putting $\mathrm{m}=\mathrm{n}$ in (1.1), we get

$$
\left|\begin{array}{ccc}
F_{p} & F_{p+n} & F_{p+2 n} \\
F_{q} & F_{q+n} & F_{q+2 n} \\
F_{r} & F_{r+n} & F_{r+2 n}
\end{array}\right|=0
$$

- a problem suggested by Vladimir Ivanoff [4].
(ii) On taking $\mathrm{p}=\mathrm{a}, \mathrm{q}=\mathrm{a}+3 \mathrm{~d}, \mathrm{r}=\mathrm{a}+6 \mathrm{~d}, \mathrm{~m}=\mathrm{n}=\mathrm{d}$ in (1.1), we get

$$
\left|\begin{array}{lll}
\mathrm{F}_{\mathrm{a}} & \mathrm{~F}_{\mathrm{a}+\mathrm{d}} & \mathrm{~F}_{\mathrm{a}+2 \mathrm{~d}} \\
\mathrm{~F}_{\mathrm{a}+3 \mathrm{~d}} & \mathrm{~F}_{\mathrm{a}+4 \mathrm{~d}} & \mathrm{~F}_{\mathrm{a}+5 \mathrm{~d}} \\
\mathrm{~F}_{\mathrm{a}+6 \mathrm{~d}} & \mathrm{~F}_{\mathrm{a}+7 \mathrm{~d}} & \mathrm{~F}_{\mathrm{a}+8 \mathrm{~d}}
\end{array}\right|=0
$$

- a problem suggested by Raphael Finkelstein [7].
(iii) On taking $\mathrm{p}=\mathrm{n}, \mathrm{q}=\mathrm{n}+1, \mathrm{r}=\mathrm{n}+2, \mathrm{~m}=\mathrm{n}=1$ in (2.1), we get
(7.1)

$$
\begin{aligned}
&\left|\begin{array}{lll}
F_{n} & +k & F_{n+1}+k \\
F_{n+1}+k & F_{n+2}+k \\
F_{n+2}+k & +k & F_{n+3}+k \\
F_{n+3}+k & F_{n+4}+k
\end{array}\right| \\
&=(-1) \cdot k \cdot\left[(-1)^{n+1}-(-1)^{n}+(-1)^{n}\right] \times \\
& \times\left[F_{1}-F_{1}-F_{2}\right] \\
&= k \cdot(-1)^{n+1}
\end{aligned}
$$

- a problem suggested by Brother U. Alfred [2].
(iv) We obtain from (3.1)

$$
\left|\begin{array}{llll}
F_{n+3} & F_{n+2} & F_{n+1} & F_{n} \\
F_{n+2} & F_{n+3} & F_{n} & F_{n+1} \\
F_{n+1} & F_{n} & F_{n+3} & F_{n+2} \\
F_{n} & F_{n+1} & F_{n+2} & F_{n+3}
\end{array}\right|=F_{2 n+6} \cdot F_{2 n}
$$

- a problem suggested by George Ledin [5].
(v) We obtain from (4.1)

$$
\begin{array}{rlll}
\left|\begin{array}{llll}
F_{n} & F_{n+k} & \cdots & F_{n+(m-1) k} \\
F_{n+(m-1) k} & F_{n} & \cdots & F_{n+(m-2) k} \\
\cdots \cdots(\cdots) & \cdots \cdots & \cdots & \cdots \\
F_{n+k} & F_{n+2 k} & \cdots & F_{n}
\end{array}\right| \\
& =\frac{\left(F_{n}-F_{n+m k}\right)^{m}-(-1)^{m k}\left(F_{n-k}-F_{n+(m-1) k}\right)^{m}}{1-L_{m k}+(-1)^{m k}}
\end{array}
$$

- a problem suggested by L. Carlitz [6].
(vi) On taking $m=0$ in (5.1), we get

$$
\left|\begin{array}{lll}
F_{n}^{2} & F_{n+p}^{2} & F_{n+p+q}^{2} \\
F_{n+r}^{2} & F_{n+r+p}^{2} & F_{n+r+p+q}^{2} \\
F_{n+s}^{2} & F_{n+S+p}^{2} & F_{n+S+p+q}^{2}
\end{array}\right|
$$

$$
=\frac{2}{5} \cdot \mathrm{~F}_{\mathrm{p}} \cdot \mathrm{~F}_{\mathrm{q}} \cdot \mathrm{~F}_{\mathrm{p}+\mathrm{q}}(-1)^{\mathrm{n}+\mathrm{p}}\left[\mathrm{~F}_{2 \mathrm{~s}-2 \mathrm{r}}+(-1)^{\mathrm{s}} \mathrm{~F}_{2 \mathrm{r}}-(-1)^{\mathrm{r}_{2}} \mathrm{~F}_{2 \mathrm{~s}}\right]
$$

on using result (i).
(vi)-(a) On substituting $\mathrm{p}=\mathrm{q}=1, \mathrm{r}=1, \mathrm{~s}=2$, we get

$$
\left|\begin{array}{rll}
F_{n}^{2} & F_{n+1}^{2} & F_{n+2}^{2} \\
F_{n+1}^{2} & F_{n+2}^{2} & F_{n+3}^{2} \\
F_{n+2}^{2} & F_{n+3}^{2} & F_{n+4}^{2}
\end{array}\right|, \begin{aligned}
& =\frac{2}{5}(-1)^{n+1}\left(F_{2}+F_{2}+F_{4}\right) \\
& =2(-1)^{n+1}
\end{aligned}
$$

- a problem suggested by Brother U. Alfred [1].
(vi)-(b) On substituting $\mathrm{p}=\mathrm{q}=2, \mathrm{r}=2, \mathrm{~s}=4$, we get

$$
\begin{aligned}
& \left|\begin{array}{lll}
F_{n}^{2} & F_{n+2}^{2} & F_{n+4}^{2} \\
F_{n+2}^{2} & F_{n+4}^{2} & F_{n+6}^{2} \\
F_{n+4}^{2} & F_{n+6}^{2} & F_{n+8}^{2}
\end{array}\right| \\
& \quad=\frac{2}{5} \cdot 3 \cdot(-1)^{n} \cdot(3+3-21) \\
& \quad=18(-1)^{n+1}
\end{aligned}
$$

- a problem suggested by Brother U. Alfred [3].
(vii) On taking $\mathrm{m}=1$ in (5.1), we obtain

$$
\begin{aligned}
& \left|\begin{array}{lllll}
F_{n} F_{n+1} & F_{n+p} & F_{n+p+1} & F_{n+p+q} & F_{n+p+q+1} \\
F_{n+r} F_{n+r+1} & F_{n+r+p} & F_{n+r+p+1} & F_{n+r+p+q} & F_{n+r+p+q+1} \\
F_{n+s} F_{n+s+1} & F_{n+s+p} & F_{n+s+p+1} & F_{n+s+p+q} & F_{n+s+p+q+1}
\end{array}\right| \\
& =\frac{1}{5} F_{r} \cdot F_{q} \cdot F_{p+q}(-1)^{n+p}\left[\left(F_{2 r-2 s+1}-F_{1+2 s-2 r}\right)+\right. \\
& \left.+(-1)^{s}\left(F_{1-2 r}-F_{1+2 r}\right)-(-1)^{r}\left(F_{1-2 s}-F_{1+2 s}\right)\right] \\
& =\frac{1}{5} F_{p} F_{q} F_{p+q}(-1)^{n+p}\left[-\left(F_{2 s-2 r+1}-F_{2 s-2 r-1}\right)+\right. \\
& \left.+(-1)^{s+1}\left(F_{2 r+1}-F_{2 r-1}\right)+(-1)^{r}\left(F_{2 s+1}-F_{2 s-1}\right)\right] \\
& =\frac{1}{5}(-1)^{n+p+1} F_{p} F_{q} F_{p+q}\left[F_{2 s-2 r}+(-1)^{s} F_{2 r}-(-1)^{r} F_{2 s}\right] . \\
& \text { (vii)-(a) On taking } p=q=r=1, \text { and } s=2, \text { we have }
\end{aligned}
$$

$$
\begin{gathered}
\left|\begin{array}{lll}
F_{n} F_{n+1} & F_{n+1} F_{n+2} & F_{n+2} F_{n+3} \\
F_{n+1} F_{n+2} & F_{n+2} F_{n+3} & F_{n+3} F_{n+4} \\
F_{n+2} F_{n+3} & F_{n+3} F_{n+4} & F_{n+4} F_{n+5}
\end{array}\right| \\
=\frac{1}{5}(-1)^{n}\left(F_{2}+F_{2}+F_{4}\right) \\
=(-1)^{n}
\end{gathered}
$$

(viii) On taking $\mathrm{m}=0$ in (6.1), we get

$$
\left|\begin{array}{cccc}
\mathrm{F}_{\mathrm{p}}^{2} & \mathrm{~F}_{\mathrm{p}+\mathrm{a}}^{2} & \mathrm{~F}_{\mathrm{p}+\mathrm{b}}^{2} & \mathrm{~F}_{\mathrm{p}+\mathrm{c}}^{2} \\
\mathrm{~F}_{\mathrm{q}}^{2} & \mathrm{~F}_{\mathrm{q}+\mathrm{a}}^{2} & \mathrm{~F}_{\mathrm{q}+\mathrm{b}}^{2} & \mathrm{~F}_{\mathrm{q}+\mathrm{c}}^{2} \\
\mathrm{~F}_{\mathrm{r}}^{2} & \mathrm{~F}_{\mathrm{r}+\mathrm{a}}^{2} & \mathrm{~F}_{\mathrm{r}+\mathrm{b}}^{2} & \mathrm{~F}_{\mathrm{r}+\mathrm{c}}^{2} \\
\mathrm{~F}_{\mathrm{s}}^{2} & \mathrm{~F}_{\mathrm{s}+\mathrm{a}}^{2} & \mathrm{~F}_{\mathrm{s}+\mathrm{b}}^{2} & \mathrm{~F}_{\mathrm{s}+\mathrm{c}}^{2}
\end{array}\right|=0,
$$

for all integers p, q, r, s, a, b, and c.
B. On taking $\mathrm{a}=1, \mathrm{~b}=3$, we have $\mathrm{T}_{\mathrm{n}} \equiv \mathrm{L}_{\mathrm{n}}$ and $\mathrm{D}=5$.
(i) On taking $\mathrm{p}=\mathrm{a}, \mathrm{q}=\mathrm{a}+3 \mathrm{~d}, \mathrm{r}=\mathrm{a}+6 \mathrm{~d}, \mathrm{~m}=\mathrm{n}=\mathrm{d}$ in (1.1), we get

$$
\left|\begin{array}{lll}
L_{a} & L_{a+d} & L_{a+2 d} \\
L_{a+3 d} & L_{a+4 d} & L_{a+5 d} \\
L_{a+6 d} & L_{a+7 d} & L_{a+8 d}
\end{array}\right|=0
$$

- a problem suggested by Raphael Finkelstein [7].
(ii) We obtain from (2.1) that

$$
\begin{aligned}
&\left|\begin{array}{lll}
L_{p}+k & L_{p+m}+k & L_{p+n}+k \\
L_{q}+k & L_{q+m}+k & L_{q+n}+k \\
L_{r}+k & L_{r+m}+k & L_{r+n}+k
\end{array}\right| \\
&=-5 \cdot\left|\begin{array}{lll}
F_{p}+k & F_{p+m}+k & F_{p+n}+k \\
F_{q}+k & F_{q+m}+k & F_{q+n}+k \\
F_{r}+k & F_{r+m}+k & F_{r+n}+k
\end{array}\right|
\end{aligned}
$$

for all integers p, q, r, m, and n.
(iii) We obtain from (3.1)

$$
\begin{aligned}
&\left|\begin{array}{llll}
L_{n+3} & L_{n+2} & L_{n+1} & L_{n} \\
L_{n+2} & L_{n+3} & L_{n} & L_{n+1} \\
L_{n+1} & L_{n} & L_{n+3} & L_{n+2} \\
L_{n} & L_{n+1} & L_{n+2} & L_{n+3}
\end{array}\right| \\
&=\left(L_{2 n+4}+3 L_{2 n+5}\right)\left(L_{2 n-2}+3 L_{2 n-1}\right) \\
&=25 F_{2 n+6} F_{2 n} \\
&=25\left|\begin{array}{llll}
F_{n+3} & F_{n+2} & F_{n+1} & F_{n} \\
F_{n+2} & F_{n+3} & F_{n} & F_{n+1} \\
F_{n+1} & F_{n} & F_{n+3} & F_{n+2} \\
F_{n} & F_{n+1} & F_{n+2} & F_{n+3}
\end{array}\right| .
\end{aligned}
$$

(iv) We obtain from (4.1)
$\left|\begin{array}{lllll}L_{n} & L_{n+k} & \cdots & L_{n+(m-1) k} \\ L_{n+(m-1) k} & L_{n} & \cdots & L_{n+(m-2) k} \\ ! & \cdots \cdots & \cdots & \cdots & \cdots \\ L_{n+k} & L_{n+2 k} & \cdots & \cdots & L_{n}\end{array}\right|$

$$
=\frac{\left(L_{n}-L_{n+m k}\right)^{m}-(-1)^{m k}\left(L_{n k}-L_{n+(m-1) k}\right)^{m}}{1-L_{m k}+(-1)^{m k}}
$$

- a problem suggested by L. Carlitz [6] .

ACKNOWLEDGEMENT

I am grateful to Dr. V. M. Bhise, G. S. Tech. Institute, Indore, for his help and guidance in the preparation of this paper.

REFERENCES

1. Brother U. Alfred, Advanced Problem H-8, Fibonacci Quarterly, Vol. 1, No. 1, p. 48.
2. Brother U. Alfred, Problem B-24, Fibonacci Quarterly, Vol. 1, No. 4, p. 73 .
3. Brother U. Alfred, Advanced Problem H-52, Fibonacci Quarterly, Vol, 3, No. 1, p. 44.
4. Vladimir Ivanoff, Advanced Problem H-107, Fibonacci Quarterly, Vol. 5, No. 1, p. 70.
5. George Ledin, Advanced Problem H-117, Fibonacci Quarterly, Vol. 5, No. 2, p. 162.
6. L. Carlitz, Advanced Problem H-134, Fibonacci Quarterly, Vol. 6, No. 2, p. 143.
7. Raphael Finkelstein, Problem B-143, Fibonacci Quarterly, Vol. 6, No. 4, p. 288.
8. W. L. Ferrar, Algebra, Oxford University Press, 1963, p. 23.
