REMARK ON A THEOREM BY WAKSMAN EMANUEL VEGH Naval Research Laboratory, Washington, D. C.

Let Q denote the set of primes $Q = Q^* \cup \{1\}$, Z the nonnegative integers and $V = \{K: Q^* \leq S_K\}$, where $S_K = \{m = Kn + p; n \in \mathbb{Z} \text{ and } p = 1 \text{ or } p \in Q \text{ such that } p \not (K, p \leq K\} \cup \{p \in Q: p \mid K\}$. Let $U = \{k: k \in \mathbb{Z} \text{ and } each of the <math>\varphi(k) \text{ integers } 1 = a_1 < a_2 < \cdots < a_{\varphi(k)} \text{ not greater than } k \text{ and } relatively prime to k, is a member of <math>Q^*\}$. We note that $a_2 \in Q$ if $k \geq 2$.

A. Waksman [1] has shown (with the aid of a computer search) that $V = \{2, 3, 4, 6, 8, 12, 18, 24, 30\}$. Trivially, 1 must also be a member of V. We shall show that U = V. It is known that U consists of the integers given above [2, p. 62].

Let $0 < t \in Z$ and let $1 = a_1 < a_2 < \cdots < a_{\varphi(t)}$ be the integers not greater than t and relatively prime to t.

(i) We prove first that $U \subseteq V$. If $t \in U$ (so that $a_i \in Q^*$) then every positive integer relatively prime to t is a member of the set

$$\mathbf{R} = \left\{ \mathrm{tn} + \mathbf{a}_{i} : \mathbf{n} \in \mathbf{Z}, \quad \mathbf{i} = 1, 2, \cdots, \varphi(\mathbf{t}) \right\}.$$

Now $1 \in R$ and if q is a prime, then either q|t or $q \in R$. Thus $Q^* \leq S_t$ and $t \in V$.

(ii) We show now that $V \subseteq U$ (using, in part, a method of Waksman). It is immediate that 1 and $2 \notin V \cap Q$. If $2 < t \in V$ then by the Dirichlet theorem, there is a prime q such that $q = a_2^2 \pmod{t}$. Since $q \in S_t$ and $q \not\mid t$ there is a prime p < t such that $q \equiv p \pmod{t}$. Thus $p \equiv a_2^2 \pmod{t}$ (mod t). If $a_2^2 < t$ then $t ||a_2^2 - p| < t$, which implies $p = a_2^2$, a contradication. Thus $a_2^2 \ge t$. If one of $a_i \notin Q$ (i = 3, $\cdots, \varphi(t)$), then $a_i \ge a_2^2 \ge t$, a contradiction. Thus $a_i \in Q^*$ (i = 1, 2, $\cdots, \varphi(t)$), and $t \in U$.

REFERENCES

- 1. A. Waksman, "On the Distribution of Primes," <u>American Mathematical</u> Monthly, 75 (1968), pp. 764-765.
- 2. E. Landau, <u>Handbuch der Lehre von der Verteilung der Primzahlen</u>, Chelsea, New York, 1953.

* * * * * 230