REMARK ON A THEOREM BY WAKSMAN
 EMANUEL VEGH
 Naval Research Laboratory, Washington, D. C.

Let Q denote the set of primes $Q=Q^{\star} \cup\{1\}, Z$ the nonnegative integers and $V=\left\{K: Q^{\star} \leq S_{K}\right\}$, where $S_{K}=\{m=K n+p ; n \in Z$ and $p=1$ or $p \in Q$ such that $p \not \subset K, p<K\} \cup\{p \in Q: p \mid K\}$. Let $U=\{k: k \in Z$ and each of the $\varphi(\mathrm{k})$ integers $1=\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots<\mathrm{a}_{\varphi(\mathrm{k})}$ not greater than k and relatively prime to k, is a member of $\left.Q^{\star}\right\}$. We note that $a_{2} \in Q$ if $k>2$.
A. Waksman [1] has shown (with the aid of a computer search) that $\mathrm{V}=$ $\{2,3,4,6,8,12,18,24,30\}$. Trivially, 1 must also be a member of V . We shall show that $U=V$. It is known that U consists of the integers given above [2, p. 62].

Let $0<t \in Z$ and let $1=a_{1}<a_{2}<\cdots<a_{\varphi(t)}$ be the integers not greater than t and relatively prime to t.
(i) We prove first that $U \subseteq V$. If $t \in U$ (so that $a_{i} \in Q^{\star}$) then every positive integer relatively prime to t is a member of the set

$$
R=\left\{\operatorname{tn}+a_{i}: n \in Z, \quad i=1,2, \cdots, \varphi(t)\right\}
$$

Now $1 \in R$ and if q is a prime, then either $q \mid t$ or $q \in R$. Thus $Q^{\star} \leq S_{t}$ and $t \in V$.
(ii) We show now that $\mathrm{V} \subseteq \mathrm{U}$ (using, in part, a method of Waksman). It is immediate that 1 and $2 \notin \mathrm{~V} \cap \mathrm{Q}$. If $2<\mathrm{t} \in \mathrm{V}$ then by the Dirichlet theorem, there is a prime q such that $q=a_{2}^{2}(\bmod t)$. Since $q \in S_{t}$ and $\mathrm{q} X \mathrm{t}$ there is a prime $\mathrm{p}<\mathrm{t}$ such that $\mathrm{q} \equiv \mathrm{p}(\bmod \mathrm{t})$. Thus $\mathrm{p} \equiv \mathrm{a}_{2}^{2}(\bmod$ t). If $a_{2}^{2}<t$ then $t\left|\left|a_{2}^{2}-p\right|<t\right.$, which implies $p=a_{2}^{2}$, a contradication. Thus $a_{2}^{2} \geq t$. If one of $a_{i} \notin Q(i=3, \cdots, \varphi(t))$, then $a_{i} \geq a_{2}^{2} \geq t$, a contradiction. Thus $a_{i} \in Q^{\star}(i=1,2, \cdots, \varphi(t))$, and $t \in U$.

REFERENCES

1. A. Waksman, "On the Distribution of Primes," American Mathematical Monthly, 75 (1968), pp. 764-765.
2. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, New York, 1953.
