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0. By the Perron maftrices P, inan n-dimensional algorithm of the
Jacobi-Perron type [1] we understand the analogue to the 2-dimensional

matrices
Pe1 P
%G1 % |

built up from two consecutive ""convergents'

o 3

’
U1 A

of an ordinary continued fraction.
As explained in detail in Chapter I of a previous joint paper of ours [2]

these n X n matrices P are defined recurrently by
Pp =P A k=0,1,-),

with the initial condition

P_1 =1 (n-rowed unit matrix) ,
where the matrices
0 0 a.ok
a
1k
Ak = (k = 0,1, ) ’
1 an-l,k

394



Nov. 1969 Bernstein and Hasse 395

are built up from the 'partial quotients"

aOk = 1’ a]k, PR a’n_l’
in the algorithm, which in the special case n = 2 of ordinary continued frac-
tions reduce essentially to only one 2 in each step.

From this recurrent definition it follows that the Perron matrices P _

are built up from an infinite sequence of n-termed columns mk—l in the fornll
Peor = B Meg) o

satisfying the recurrency formulae

0.1) 2ok™e-n F T T o1 k1 k20,

with the initial condition that

Em—n = WO,.-. ’S.m—l = Wn..]_
are the columns of the n-rowed unit matrix I.
In the present paper the entries of the Perron matrices Pk-l shall be
denoted by pg_)(n_v,), where the super- and subscripts V = 0,°°*,n -1 and

V' = 0, -+ ,n - 1 indicate the lines and columns, respectively:
0»: e, n-1
0, ++,n-1

Thus the recurrency formulae (0.1) with the initial conditions (0.2) become

W) )

Pk—l = (pk—(nuw) V lines <V

V'
V' columns

o

n-1
k>0
0.9 ) = ¥ v (V . )
v

it aV' pk—(n—V') = O, , N - 1
with
) W {1 for v = V'}
(0.4) —-vt) T Cur T o for v £

(entries of the unit matrix I).
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@) would be the A(k+n).

We shall consider only purely periodical algorithms. Let { be the

In Perron's original paper [2] these p

length of the period. Then in the recurrency formulae (0.3) there are only £
different n-termed coefficient sets av,k W' = 0,°*°,n - 1), which recur
periodically. In our first, purely algebraic part these £ sets will be con-
W =
m A=
0y+++, £-1). For the sake of algebraic generality and formal symmetry we
o

include in this stipulation also the coefficients a,

sidered as algebraically independent indeterminates and denoted by a

which in the actual algo-
rithm are throughout equal to 1.
For purely periodical algorithms, the infinite sequence of recurrency

formulae (0.3) reduces to a finite system

n-1 k 0

vy _ (0} —0,+ -~ 1
(0.5) Ppoogy = Z A1 P(kg-n)- (n-v1) ,),\:g’ . ’l‘i
Lt =0, ,n-

of £ linear recurrencies with the n linearly independent initial conditions
0.4).
We shall chiefly be concerned with the special case of period length ¢ =

1, where there remains only one single linear recurrency

n-1

) _ w) k>0
(0.6) P’ = Z ByPie_(n-v) (v - 0,--"-,n-1>

=0

with the n linearly independent initial conditions (0.4). In this case we shall
obtain the following simple explicit expressions for the entries pév) of the

Perron matrices Pp (last column):

W) = 2 : Kot o« +k
Pl Likg,-++ K _ . )=k+(n-v) ( ol
Kgs®+ e,k > 0

0.7)
ko #oee K, Ky o kn-1< k>0 )

kg + -« +kn_1

with summation restricted by the linear form
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(0.8) L(ko, ceey, kn—l) = nko + (n - 1)1{1 + ecoe 4 lkn—l

in the summation variables kg, ,kp_1, and with the polynomial coefficients

0.9)

ko, e kn—l ko! oe e kn_l!

< kg +eee + kn_1> ) (o + = +k N
The procedure by which we reachour aim (0.7) is the very old method
of Euler, viz., to translate the recurrency formula (0.6) for the sequences

pl({l-)) into algebraic expressions for the generating functions

p(V)(X) = Z pl({V)Xk v=0,+,n-1),
k>0

and to determine the power series coefficients p, ' from those algebraic

®)
i k
expressions.

In the general case of arbitrary period length £ we shall show that the
same object can be achieved in principle. The explicit formulae, however,
would be so complicated that one can hardly expect to write them down in ex-
tenso, but for simpler special cases. As an example, we shall carry through
in extenso the very special case £ = 2 with n = 2, i.e., the case of purely
periodic ordinary continued fractions with period length 2.

There is, however, a special case of a more general type in which we
can obtain as definite a result as (0.7). Amongst the numerous periodic algo-
rithms, discovered by the first author in previous papers*, a particular period
structure prevails, viz., of length £ = n and with the following specialization
of the coefficients in (0.5):

d, 0,v1)

(0.10) ag,‘) =t a vt = 0, ¢+e,n-1),

17l

where

*See the complete list of references in [3].
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_ 0 for A+vi<n
(0.11) an\’V') T 1 for A +V'>n

is the so-called "numbertobe carried over' in the addition of the n-adic digits

AV, In this important case we shall derive from (0.7) the following
generalization:

(0.12) o) = t—[%]—l Z

L(ko,. .o ,kn_1)=k+(n-v)

<k0+... +kn—1>k0 E +kV
LR R Y

X

kgreeHs o kg koo < k>0 )
ces vV =0,°°,n -1
0 n-1

We shall come back to another significance of this case in our second
chapter.

CHAPTER I: ALGEBRAIC FOUNDATIONS

1. We begin with considering the special case of period length ¢ = 1.
To the recurrency formula (0.6), viz. ,

n-1

. " = > ey G20

V=0
with the initial canditions (0.4), viz.,

1.2) pf‘&_w) e e =0em-1

we let correspond the characteristic polynomial

n-1

i
F=F(x)=1—Zav,xnv ;

Ur=0

and the n generating functions
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NCIN Z p;(:) Kk
>0

Now

Xn-v'p(u) _ awpk(:)xkﬂn-w)

-
V
S

) k
il (p-vr) X

M 1

W
§

—pt

) Kk
AP -pr) X

k>0

) k

v
- a  .p X
o< k< mv)-1 VK- (n-V')

=0 VI k- (n-V1)

v-p?
a,X for v <V

0 for V' > v

the latter because the summation condition 0 < k < (n - ¥') - 1 is equivalent
to -(n - V") < k- (n-v') < -1, sothat theinitial conditions (1.2) are applicable.
Summation over V' then yields

n-1
V) W _ V) k
FPY - P = ) Z AP v | X F
k>0 \ V1=0

v
v-v!
'+>: Ap® ‘
V=0

Here the negative terms on theleft and right are equal to each other on account

of the recurrency formula (1.1). This gives the algebraic expressions
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)
o = f*_F_ with A%
(1.3) v
=A% =Y a2 w0,
V=0

®)

for the generating functions P 7.

2. In order to obtain explicit expressions for the recurrent sequences

)

Ps we have to develop the rational functions (1.3) into power series in x.

The power series for 1/F is obtained easily from the geometrical series:

n-1 k
1 _ n-
F = aw X
k> 0\ V=0
~ ko +oeee o+ kn-l
ok . >o\kp ik )%
(2.1) 0°" " ¥po1Z e
s ako akn—l mk0+(n—1)1«:1+---+1kn_1
0 n-1
_ 3 <k0+"'+kn-1>ako_._akn-1 X
B coe _ ’
0\L@=k\ %0’ 7 Ky /0 n-1
with the linear form
(2.2) L@m) = nko + (0 - 1)1«:1 + oree + 1kn_1

in the summation variable vector

M = (ko, teey, kn—l) .
In what follows the summation variables kg,++-,k,_1 are throughout silently
supposed to be 0. The solutions ® of L@ = k correspond to the partitions

of k into summands from 1,°<+,n; their number pn(k) is well known.
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In order to obtain from (2.1) the power series for the rational functions
p(v) in (1.3), we have to multiply by the single terms awxv'w of the poly-
nomials A(V) in the numerator and then sum up over V', Multiplicationby one
of these terms and subsequent transformation of the summation yields in the
first place

v-pt
% kg +ooe +E

1
F >0 L(sm)=k<ko’ s kn-1>

oS R e
X 2g ] n-1

(ko + oo +kn—1>
kK., °°+, k
k>0 \ Lr)=k-(@-v*) \ "0 n-1

k ,+1 kn—l K
'a '°"a °

ako .. X
0 ! n-1

In order to simplify the subsequent summation over V! we have here formally
admitted terms with L(kg,**,k,_1) < 0, which actually vanish because the

summation condition is empty. Summationover V! thenyields the development

o . T ZV 5 (ko Foee +kn_1>

k>0 \ V=0 L (®)=k- -v*) ks ey Ry
Ko Kt k1l &
X aO aw an—l X

for the generating functions, and thus the explicit expressions

’ k 4 cee0 k
vy _ Z E 0 1
p - ( kO, see kn—l >
2.3) V10 LER)=k- (-01)

for the recurrent sequences in question.
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3. As alast step, the sum (2.3) of polynomials in ag,*++,a, 1 can be
put into canonical form, i.e., represented as a single polynomial in aj,"**,

a_ .. This is achieved by a further transformation of summation which, in its

n-1
turn, allows to reverse the order of the two summations.

The transformation, leading to this, is
(3.1) ky, >k, -1.

Itis true that by it the silent summation condition k, > 0 is transformed
into kvl > 1. However here, too, after the transformation, the summation
may again be extended formally over all kvg > 0, because the polynomial co-
efficients with a negative term in the "denominator' vanish, if only the sum of
all terms in the "numerator' is non-negative. The truth of this assertion is
easily seen by expressing the factorials in the definition (0.9) of the polynomial
coefficients as values of the Gamma-function and observing that this function
has no zeros at all, and has poles only at 0, -1, -2,<++, Thatthe "numerator"
here is non-negative, is seen as follows. Under the transformation (3.1),

according to the definition (0.8), one has

L) —> L) - @ -v")

and hence
i k, + + 1)+ +k
(3.2) o _ Z 3 0 " v n-1
. Pk = 4] kO’ e, kV'..]_’ eee k 1
V1=0 L@ER)=k+(n-v) n-
X ako o0 akv' D) akn_l
0 4] n-1

Here the sum of all terms in the "numerator' is surely non-negative, because
L) =k+m-v) >k+12> 1 and hence not all ky,+--, n-1 vanish.

Since by this transformation the inner summation condition in (3.2) has
become independent of the outer summation variable V', the order of the two

summations may now be reversed:



1969] BERNSTEIN AND HASSE 403

e B (Do) )

L @»)=k+(@n-v) \v'=0 vt * n-1
(3.3)
kg k
n-1
Xag oo an_l

Thus the polynomial (2.3) has already been put into canonical form. But,
moreover, it is even possible to consummate the inner sum in (3.3). For, by

definition

)

(k0+... + (kV' - 1)+ +kn_1) ) (k0+... + (kV' 1)+ e +kn—1
kg, oo, kw -1, -, kn—l ko! ---Tkv, -1 ... kn_ll
kg+.ee +k ) k
n-1 14
= . (also for k, =0) .
(ko s s kn-l kg + +kn_1 2
and hence
v
Z (ko + + (kw - 1) + + kn_1>
Dreo ko 9 9 kV' -1 ’ ’ n-1
(3.4) -
(ko'l‘ +k 1) ko’l'" +kv
kg » ’kn—l kg + + kn_1
Thus (3.3) yields our first chief result
kg + ¢ +k
w 0 n-1
p ) = Z (k k X
k 0 » H n-1
L(m)=k+(n-v)
(3.5)
y k0+...+kv ako...akn"l kZO
kg + o Kk 0 n-1 *\v=0,-",n-1

as announced in (0.7).

We remark that (3.5), conveniently interpreted, holds even for k > -n,
i. e., including the initial values corresponding to k = —-(n - V') ' = 0,°+- ,
n - 1). For in these cases the summation condition L) = V' - ¥ has no non-

negative solutions if V' < Vv, only one such solution, viz., kg,***,k = 0,

n-1
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if V' = V, and only such solutions with kg,--- ’kv = 0 if V' > U Hence for
Pt < V the sum is 0 by the usual convention for empty sums, for V' > V itis
also zero with regard to the factor

and for V' =V itis 1 if this factor of the indeterminate form 0/0 is under-
stood as 1.

It is furthermore perhaps not useless to remark that for the first initial
condition (1.2), i.e., for V = 0 this result can also be written in the simpler
form

k, 4otk k, +1 k k
(3.6) pig) = E ( 0 n-1 | a 0" g1l md &k > 0)
- n-1

kO”’”"k 0
Lér)

as is already clear from the intermediate result (2.3).

4. Since operating with polynomial coefficients, and in particular with

their fundamental recurrency property

n-1

@ Z(ko+--- +(kw—1)+...+kn_1) =(k0 + o +kn—1
Yr=0 Koottt =1tk Ko oo sk g

(special case ¥ = n -1 of (3.4)), is not so familiar and handyas in the special
case n = 2 of binomial coefficients, we attach here the following simple re-
duction of the former to the latter.

From the definition (0.9) one has

(ko 4 ene +kn_1) } (k0+... +kV o
kO y v, kn-l kO , e, kV
(4.2)
X((kO + k) kg e +kn—1>
?

kg + 00tk , k , k

vl n-1
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forany ¥ =1,"*+,n- 2. For V = 1, the first factor on the right is the bi-
nomial coefficient
ko + ky
ko

Iterating this case of (4.2) in the second factor on the right, and putting

]

kb k

0
k' =k +k
(4.3) : o 1
k;l—l = k0+k1+... +kn—1 .

one obtains the reduction

w () L () ()
N cee 1 i i °
k0 ’ ? kn—l k0 lKl kn—2

Application of this reduction to our final result (3.5) yields the equivalent

expression

o Z (- (2
k STAG Kh-2

S@)=k+(n-V)

4.5)
- 1 ~k?
kl'/ akb ak'l kb . akn—l kn-z k>0
R oM n-1 Vo= 0,+7,n-1
where
(4.6) s@r) = kb + eee + k;l—l

is the simpler linear form obtained by the transformation (4.3) from L¢nr) in
(2.2). The silent summation condition ko,- .. ’kn—l > 0 is transformed in 0

S Kyt S K
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Special cases of the formulae (4.5), with n = 2 and n = 3, have re-
cently been developed by Arkin-Hoggatt [ 4].

5, We now turn to the general case of an arbitrary period length £. To
the £ recurrency formula (0.5), viz. ,

) k>0
(5.1) puu Z 31 P14 0)- (n-b") (?\ =0, ,n - 1)
V=0

with the initial conditions (0.4), viz. ,

62 o =) =0 n )

we let correspond the £ polynomials

F(A) - F(}\)(}() Z a(A) n-v!
p1=0

and the n generating functions
4 4 Z V) k

We split these polynomials and functions into components, corresponding to the

residue classes mod £ of the x-exponents:

I
FN) - Z r%) with Fy,‘) FA) )
(5.3) AT=0
OB L0 o
S V=0 v

n-Y'=)\"mod y
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I

p® = > p(v.,) with p;(t..) p;(z},.) ®) =

AN=0
(5.4)
_ W) KLy An
- Z: Prgan X .
k>0

In order to translate the recurrency formulae (5.1) with the initial con-

ditions (5.2) into algebraic expressions for the generating functions, we multi-

A)_n-v* ™)

ply, for each fixed A and V, the terms a, X of a component F)\' by

that component p)(? for which

(5.5) A 4+ A" =X mod? .

Subsequently we sum up, first over the V' with

(5.6) n-v = A"mod{ ,

and then over the £ pairs A',A" with (5.5). According to the congruences
(5.5) and (5.6), we put

5.7 -v) +Am =Xt

with an integer h > 0. The whole procedure will be quite analogous to that in
Section 1 for the special case £ = 1. In the first place, one has

A _n-v' (V) o _w) (RL+X ")+ (n-V?)
1(1- oy = Za Plegay 1%

Il

Z a kl;z)ﬂ” (k+h)e +2 by 5.7))

_ 2N ) ko4
= E v p(k h)ﬂ_,_)\vx
kZh

Kh

1l
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_ n_w kg )
= 2pr Py ) - (n-vm)®
k>0

. W [ SEDY
Z A P g 40)-(n-vt)®
0<k<h-1 -

_ @) Ko +)
-2 B Phegn) - (n-vn)®
k>0

_ a,(,),\)xv'w for V' =V -2 mod! and V' < V'}
0 otherwise

The latter one sees as follows. The summation condition 0 < k < h-1 im-

plies, again by (5.7), the inequality chain

Nn<L-0-MLA-@-v)S K +)-0-v)L (-1 +2am"

—-v) = @ -1,

so that the initial conditions (5.2) are applicable. They say that almost all

terms of the sum in question vanish, save only one with

k+ N -m-v)=-(0-v), or else, ki + ) =v -

Such a term can occur only if V' =V - X mod ¢ and V' L V. If these condi-
tions are satisfied, it actually occurs, because then the equation ki + A =V -

V' has a solution k > 0 with
kK =@ -v")-A< @-V) -2 = -A"<h,

and hence kK < h - 1.
Summation over the ¥' = 0, ,n -1 with n-V' =A'mod ¢, accord-

ing to (5.3) now yields
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n-1
@) 0), ) _ ) _@) \ kA
Exy’ = exr oy = ‘Z Z B P4 - | * +
>0 V=0

n-V'=A'mod {

v
CY e

V=0
n-V'=)\' mod!
V-V'=Amod/

and summation over the pairs A', A" with X + A" = A mod ¢ further yields

n-1
M) W) ) _ W W)
Z F)\l P)\n - P}\ - - Z Z a'V' p( {4+))-(-") X

AM+A "'=mody kZO V=0

n-1
xk2+)L + E aV(),‘)xV_V'
V'=0
V-V'=Amod!

Here the negative terms ontheleft and right are equal to each other on account
of the recurrency formulae (5.1). Thus the following system of { linear equa-

w) W)

tions for the £ components P)\” of the generating function P results:
Y EW B A0 g 40
A A "= mod!d

(5.8) n-1
_
= AWV = Z al(f'x)xv v

V=0

V-V'=xmod{

)

The matrix of its coefficienta )is built up from the components F,\', of the

. Lines and columns of this matrix are speci-
fiedby A and A" = A - X mod { (not by A and A'). Written out fully, it
is the matrix

characteristic polynomials F
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(0) (0) 0)
Foo B 0 H
o | F (1) F(1) o F(1)
(F)\—N') A lines 1 0 2
A'' columns M
F(ﬂ—l) F(ﬁ—l) L. F(ﬂ -1)

2-1 e-2 "7 %0
Here ) - )' on the left is to be understoodas reduced to itsleast non-negative
residue mod ¢ .
Now let

= g0
D = K™,

) lines
A" columns

denote the determinant of this matrix and (D;)i))\,,) its transposed adjoined
matrix. Then the linear system (5.8) has the solution

g-1
[PV OV %)
kaNA

W _ T S
(5-9) P)\” - D ’ (}\ - 0’ H L - 1) .

From this one obtains the following algebraic expressions for the generating
functions themselves:

2-1/9-1
()] V)
Z ( Z DA_A")A

(5.10) P(V) _ A=0\ x"=0

= . w=0,",n-1) .

w)

In order to obtain explicit expressions for the recurrent sequences p" ’,
one has to develop these rational functions of x into power series in x. This
seems however extremely difficult. One would first have to find a sufficiently

o))
A=A
In the following two sections we illustrate this on the next-simplest case

smooth expression for the determinant D and its minors D

¢ = 2 and carry it through to the end under the special assumption n = 2.
After what has been delineated in the preceding sections, we can be brief in
doing this.
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6. In the special case £ =2 we have to consider two alternating re-
currency formulae

) (v)
Pok = Z A Pok-(n-v1)

V'=0

V)
Pok+1 ~ E by,p k+1) (n-v1)
Vi=0

for each of the n linearly independent initial conditions

@) - W

p-—(n—V') - eV' (V:V' = Os P 1)

For the sake of easier readability, we here have distinguished the two coef-

W

ficient sequences, hitherto denoted by 8y s instead by the upper indices A =
0,1 by writing them with two different letters a,b. In the same manner we

denote the polynomial pairs FO‘) and A(A’V) (A =0,1) now by F, G and

A V) LW

“s» B"", respectively.

From the pair of characteristic polynomials

n-1
_t
F = F) = 1 - aV,an=F0+F1,
V=0
n-1
_pt
G =Gk =1- bx = Gy + Gy,
V=0

each decomposed in its even and odd components, algebraic expressions for the

generating functions

Py = me )

likewise decomposed, are found as follows.
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The linear equation pair (5.8) for the component pair P(()V), P(lv) has the

Fo Fy
G Gy

matrix

with the determinant
D = FQGO - FiGl ’

and with the transposed adjoined matrix

Gy -Fy
-Gy F,

The terms on the right are

AW - Z aV,xV—V'

V=0
v-v'=0mod 2

V=0
V-v'=lmod 2
Hence the solution (5.9) for the components is

GroA(v)

- FiB(V) (V) —GIA(V) + FoB(V)
Pt = —F5, -0

p¥) -

and the generating functions (5.10) themselves are

Gy - Gi)A(V) + (Fy - Fi)B(V)

FoGo - Fi03

W)

(6.1) P
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It is worth remarking that this can be written in such a way that only the
characteristic polynomials F,G themselves, not their components, figure in

it. For, the component pairs are given by

Folx) = L(’L“;L_(‘X) ,  Fy®) = _}’:EE)_'Z_F('_X) ,
Go(X) = -G-;()(l;_c-(;}g , Gi(X) = G(X) -zG(—X) ,

Thus the determinant becomes

FX)G(-x) + F(-x)G(x)

D(X) = 3 )

and the generating functions become

¢xAM ) + FxBY )

(6.2) pM ) = T

7. Under the special assumption n = 2, one has

no
]

F =1-a;x -z (1 - ax?) - ax ,

G =1-bx -bx: = (1-bx?)-hbx ,
AQ =g | A® < g,
BO = o [ B® - px ,
D = (1 -2agx?) (1 - bpx?) - abx?
=1- (3 + by + aghy)x? + abxt ,
o0 _ a9 + agbgx - dgbgx® ’ L _ ay + (by + ayby)x - aghyx®

D D

The power series development of 1/D is
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2. (g + by + aby)x? - aghyxt )~
k>0

o=

ko, kg >0\ 1

=2 2. (-1)k1<k° ; ki)(ao + by + 3-1101)k°(aob0)ki 2k
k>0 ko+2ky= 1

From this, one obtains easily the following power series developments for the

even and odd components of the two generating functions:

2~ agbox? i
P —p = 2 2 - l)ki(k°+k>(a0 +bg+a by )k°a§1+lb0k1:| x2K

I

k>0 | g2k =k

vl = (_1)k1<k0+kk1—1>(a0 R N e
k>0] kp+2k =k 1
| (kp>1)

ko k kil 2k+1
(—1)k1<k°;1k1)b1(a0+b0+a1b1) °a 1+1b 1]

(0) agby
D

1l

k>0 [k0+2k1=k

a
(7.1) P(()l) = T)i' = Z { Z . (- 1)k1 (ko + k) ay@y+ by +ayby )koagibgi]xk

I

10/ kgt2K=
(bo + a1b1 )X - a0b0x3
pM - 5 = > M
k>0 k0+2k1=k

ko k ‘
X (ko 1:1 k1> (by + 24by) @y + by + a4hy) lag 1b%’<1:|X2k+1

-z [ > 1)“‘:1("‘01:1 ky - 1)><

k>0 kg 2k =k
(s>1)
% (ao + b() + albi )ko 1 k1+1bk1+1] 2k+1 .

The sums in square brackets — or in the first and fourth cases, more exactly,

their differences — are the looked for explicit expressions for the recurrent
sequences

(0) 0) (1) (1)
Pog » Porrq 204 Poyis Popig
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8. We finally come to consider the important special case, where { =

n, i.e., the period length coincides with the dimension of the algorithm, and

OV

where n? indeterminate recurrency coefficients a are specialized to com-

m
binations of only n+1 indeterminates 2, and t as specifiedin (0.10), (0.11),
viz. ,
d_(\,v)
N _ " . n o_ J0 for A+ 1< n
(8.1) a t a, with d () = 1 for A+ >anf"

In this case the recurrency formulae (0.5) specialize to

N = G ) ( k>0 )
V H

Prnap = 2o t 2P kn+) - (n-1)

with the n linearly independent initial conditions (0.4), viz. ,

(8.3) pgl)q_w) = ez(jl,/)

W, =0, *,n-1)
These recurrency formulae can be reduced to those of the special case
t = 1, but with new coefficients. For this purpose consider the modified

sequences

k+1 (V)

-0 _
(8.4) pkn+)\ =t pk_n+A *

w)

They satisfy again the initial conditions (8.3). Now the p" ‘-subscripts on the

right of (8.2) reduce as follows to the canonical form on the left:
kn+2) -@-v) =k -n+ Q-+ = (k-1+dn(>\,v'))n+N

with 0 < X< n- 1.
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Hence,

-w) _ kd LYY )
(8.5) Pkn+))-(mn-v1) = v P kn-+))-(n-")

From (8.4), (8.5), we

obtain the following transformation of the recurrency
formulae (8.2):

- _ k+1 (v)
Penin = b Prnin

n=1 k+1+d_(A,V")
ot

1l

/ a p(v)
V=0 V'Y ( nt)- (n-v')

]

n"_‘l —(V)
u?:() BP (- (aovr)

Thus the modified sequences pl;g:_))\ satisfy the linear recurrency (0.6) with

the modified coefficients ta,,, and, as already said, with the same initial
conditions (0.4). According to (0.7), they are therefore given explicitly by

p'(V) - . ko + eee o+ kﬂ)x
kot en)= N+ @-v) \ K0 ¢+t 0 En
(8.6) -
y kO + eeo + kV tk0+ +kn_1ak0 o akn-l
ko + ces + kn—l 0 n-1

( k>0
V=0,"**,n-1 ’

Going back to the original sequences pr(1Vk)+>\ by (8.4) and replacing the

no longer necessary detailed subscripts nk+A by simply k, we obtain our
second chief result,
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kg +e00 + ky x
E Ko, oo 5 K
L@r)=k+(n-v) n
kK + «eo +kV k0+...+k k k

(8.7) X 0 t l’l—la 0 cer g n-1

k, + ¢ +k 0 n-1

0 n-1
kZO
VvV =0,°**,n-1

as announced in (0.12). The remark after (3.5), concerning validity even for

k > -n, i.e., including the initial values holds obviously for (8.7) as well.
Application of the reduction (4.3), (4.4) of polynomial to binomial coef-
ficients to this result yields, in analogy to (4.5), the equivalent expression

_[.'5]_1
1}
pff) I & > (k1)<k5> k! 4 y
S@r)= +(n-v) k(') ki kh-z
(5.5) y kb tk;l-lakbak'l“kb K1k 2
. K 0“1 n-1

k>0
V=0,,n-1

CHAPTER II. GENERALIZED FIBONACCI NUMBERS WITH TIME IMPULSES
9. It is known from the history of mathematics [5] that the original
Fibonacci numbers Fk’ named after their discoverer, and defined by the

recurrency formula

(9.1) F = Fk + F

k-2 (2 1)

k+1

with the initial values
9.2) =1, F, =1,

describe the mathematical structure of a biological process in nature, viz.,
of the way rabbits would multiply if no outside factors would interfere with this
idealized fertility. From a purely speculative viewpoint this recurrencydefin-
ition could be replaced by a variety of other structures. So, for instance, the
initial values could be replaced by others, as was done by E. Lucas. Thus

(9.2) by (in new notation) becomes

(9.2") Ly =1, L, = 3,
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Orthe dimension 2 of the recurrency could be increased to any n > 2, as was
done by the first author [3] who substituted (9.1), (9.2) by

n n n
(9.3) From = Fie 0 * Pyl k>1,
n n n
9.4) Fioeeo,F 1 =0, F =1.

This generalization to higher dimension could be carried further by considering

recurrencies with constant weights ao,- e ’an—l given to the preceding terms,
viz. ,
n n n
9.5) Fk+n = aOFk + oeeent an—le+n—1 k>1
with arbitrary initial values
n n
FiootF

Formula (9.5) is actually the recurrency law (0.6) of our introductory section.

The question which is the natural generalization of the original Fibonacci
numbers is idle. The answer to it depends on the viewpoint one takes and is a
matter of mathematical taste and preferences. Raney [6], for instance, has
proposed a generalization widely different in viewpoint and preferences from
those mentioned above.

From a purely biological, or even mechanical, viewpointone would rather
expect that a process in nature, depending on n preceding positions, would
not go on with such an idealized uniform law of passing to the next position as
are those mentioned above, but rather with additional impulses, acting on this
law, which are themselves functions of time. It is already a daring presump-
tion that such impulses, imposed by nature, would be recurring regularly.
But the purely mathematical applications which will be given in a subsequent
paper are some justification for the subsequent new, and in the view of the
authors, more '"natural' generalization.

For this proposed generalization of the Fibonacci numbers we modify the

recurrency law (9.5), i.e., (0.6) by time impulses in the shape of a constant
time factor t # 0, attached to some of the weights g, 01

to the more general recurrency law (0.5) of our introductory section. As ini-

+,a according

tial values we admit throughout the n linearly independent standard sets (0.4).
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From them any set of n initial values may belinearly combined, and the cor-
responding recurrent sequence will then be obtained from those corresponding
to (0.4) by the same linear combination.

10. Before we apply the general results (8.7), (8.8) of our first chapter
to special cases of the generalized Fibonacci numbers with time impulses, let
us make some preliminary remarks.

1.) The restriction of summation

L) = nky + @ - kg ++o¢ +1k , =k + @-V)

1

in the sums (8.7) with multinomial coefficients

kg + ..o + k
(ko"”' ’kn—1>
n-1

can be removed by eliminating the last summation variable kn—l (the only one

with coefficient 1) on the strength of that restriction, viz. , by putting

(10.1) kn-l =k+ @n-"V) - (nk0 + sea + 2kn_2)

wherever kn—l ocecurs in the terms of the sum. It is convenient to combine
this elimination with the reduction (4.2) of the multinomial coefficients of order

n to such of order n - 1 and binomial coefficients. Thus the formulae (8.7)

become
) _ Sobr) &+ (0 - V) - Lw)
P 7 k ...Zk (ko’“':k 2 Sofm) )X
0°" "7 **n-2 b~
y kO +oees + kv y
kK + (@ - V) - Lyw)
(10.2) k- ‘i]+(n-v)_1_Lo(m)
xt - X
kg kg ko k+@-v)-Lo@r)-Sobr)
Xag 24 22 8n-1
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0B (e (< )
kpote ook, o\ 07 *Tn-2 0
B
(10.21) k, kq k o k+l-Lo@R)-Sy(m)
Xag 83 "3 9

with the reduced linear forms

Loem) = (n— 1)k0 + oo + lkn_ So(m) = ko + .00 + k

2’ n-2 °
For confirmation of (10.2), (10.2'), notice that with the help of these twolinear
forms the substitution (10,1) takes the form

kn-l

=k + (n —V) - Lo(‘m) - So(sm) .
Notice further that the silent summation condition kn-l > 0 is trans-

formed into the upper limitation of summation

Loe.m) + So(s.m) S k + (n -V) .

This limitation may be passed over silently by the following conventions. For
Lybr) < k + (n - v) no convention is necessary, because in this case the binom-
ial coefficient vanishes if Sy(m) > k+ (@ -v) - Loér); in particular for Lgbr) =
k + (n - y), however, we convene to consider the denominator of the subsequent
fraction cancelled against the same factor of the factorial in the numerator of
the binomial coefficient, as will actually be done later. For Ly@m) > k +(n-
V), we convene to consider the binomial coefficient as being 0; this is ot in
accordance with the usual extension of Pascal's triangle to negative "numera-
tors"-k by means of the fundamental recurrency property, fixing arbitrarily,
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() -+
since this extension gives them non-zero values as long as the '‘denominator"
is non-negative.

Observe, by the way, that for ¥ = n - 2 one has ky++-- +kV = Sobm.
Hence in this case the binomial coefficient canbe combined with the subsequent
fraction to

(k + @ - V) - Lyw) - 1)
Selm) - 1 *

In (10.2), (10.2'), the restriction of summation L¢r) = k + (n - V) has
disappeared. This is deceptive, however, in cases where the recurrency co-
efficient a1 is specialized to 0. For, in such cases only the terms in which
a1 has exponent kn—l = 0 remain in the sum. Thus the restriction re-
appears, so to say, by the backdoor, in a slightly modified form, viz., without
the term lkn-l'

bargain since now there is nolonger a term with coefficient 1which would allow

This is a change to the worse, even to the worst, into the

a further elimination.
2.) Things stand better with the sums (8.8), in which the polynomial co-
efficients have been reduced to products

( ki) o ( kI'l-l)
kj k;l_z

of binomial coefficients. Here, in the restriction of summation

S(m) =kb+--- +k;1_1 =k+@-v),

each of the n summation variables k!,-- -,kl'l_1 has coefficient 1, so that
there are n different ways of removing the restriction by elimination. How-

ever, in cases where a recurrency coefficient 2, with V' > 1 is specialized

to 0, only the terms with kb, = k]'},_1 remain in the sum, so that the coef-
ficient of k{,, becomes higher than 1, and thus elimination of kl'J, is barred.
For this reason the restriction can be removed only in cases where either at

least one consecutive pair e A0 with 0 < V' < n-2 or a1 alone is

not specialized to 0.
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We shall chiefly be concerned with the latter case a4 ¥+ 0, in which
reduction of the sums (8.7) to unrestricted summation has already been achieved
in (10.2), (10.2'). For treating the cases where some of the preceding a,, are
specialized to 0, it will, however, be more convenient to start from the cor-

responding reduction of the sums (8.8), viz. ,

B () (EE)
Ko ’kn—z k0 kn—3 kn--Z

Kkt
X v X
k+@-v)-8y®Y

k—[%] +Ho-V)-1-Sp)

Xt
(10.3)
A T '
X8 2 n-2
k+(n—V)—Som')—k;l_2
Xa,
n-1
k>0
V= 0,07+ ,n-2
pf(n—l) - 3 (k;) .. (kl'l_z)(k+k1i—sow)) «
eoo it -
ket o \K k' n-2
k- -ﬁ]—so(sn') x
t
(10.31) .

- 1 _kt
ky k-l kK
0 "1 n-2
k+1—So(€m')—k;1_2

n-1

X a X

X a

with the reduced linear form

= s e 1
Sl kG * kn—z
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The remark made after (10.2), (10.2') about the silent summation condi-
tion ki . > 0 holds, mutatis mutandis, also for the silent summation condi-
tion k;l_l > k;l_z in (10.3), (10.3'), the latter corresponding to the former
under the transformation (4.3). We uphold the conventions made in that remark.

We must enlarge, however, on the subsequent observation about the pos-
sibility of combining the binomial coefficient in (10.2) with the subsequent frac-
tion for v = n - 2, because this observation generalizes here to all v = 0,

+,n - 2 and thus allows to get rid of these fractions altogether. This is

seen by the following chain of reductions:

(k + -V - so(smv)\ k!, k!, (k+(n—V) - Solm) = 1)
kl
2

JE T @-v) - Son) T KL ko, -1

1 1 1 ' _
K2\ 5 K (kn—2 1)
K-s/kha Ky s\kg-1

1. ! U -
(kl}’l-l) kV—l—l - kl/'+1
Kk, K k-1

which, of course, has to be considered only for kb > 1 and hence all subse-

n-2

quent kb 410 00T kh-z > 1, too. This chain of reduction yields

AN AP E @-v) - so(smv)\ k1)
k, k! o kil 5-1 /k + (0 - V) - Spfm")
=(k'u+1 ] 1) ,,,(“h-z - )(k+(n—V> -1—so<sm'>)
k-1 K o - K, -1

By the transformation

k= 1 —okl,tr k! o= 1= k!

n+2 2’

after which the summation range is again k k! > 0, then

A 000
v+1° n-2 =
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S@) S@') + m-V)-1,
and thus (10.3) becomes

V) _ 3 k'1 b + 1 . kfa-z
pk = K cee Kt ses et 1%
kb, eee ,,k;l 0 V-1 n-3

/ ®) ' K '
: (k + e s )) tk—[ﬁ]-so(sm ),
k’

n-2
(10.4) w)
U I B TS 2 S U
0 a v
k' -k k+e v) -SoEm")-k!
o 0-2 n-3 " "n-1 0 n-2
X 2 n-1

{ k>0
V=0,",n-1

where the modified middle terms
(k;} + 1)
ko1
and

Ky -k,

are the coefficients

are onlymeant for V= 1,"°*,n - 2, and where e(()v),e(v)

n-1
in the first and last column of the unit matrix, introduced in (0.4); by inserting

1 at the two places, the case V = n - 1, split off in (10.2'), (10.3'), could
now be re-included. Formulae (10.4) could be expressed more concisely in-

)
v

e

troducing also the other e v =1,--+,n-1) and using the product sign:
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oy V) @)
(V) _ nl—_lz k{)' + el}' k;}""'ev' -’k;}'_l x
P = K a':IJ' )
kb,--- ’kh-z V=0 V-1
(10.5) k'[lﬂ‘s“w) kv ey - s
. ) Xt k.
n-2
)
9 ak+en_1—so(m')—k;1_2
n-1

k>0
V=0, n-1

where one has to understand formally k'_1 = 0. For our intention of passing
to special cases, though, formulae (10.4) allow a better survey.

Notice that for each vV = 0,:--,n - 2 the silent summation condition for
Kl in the formula (10.4) or (10.5) for p_’) has to be modified into k,+1 >
ki/-.l'

Since the original formulae (3.5), (8.7), (10.2) and (16.2') with the poly-
nomial coefficients will not be referred to again, we shall hence forward sim-
plify the notation by omitting the dashes on ky,--- ,ky_2.

3.) As to specialization of the recurrency coefficients aj,a4,"**,a, 1,
we may suppose without loss of generality ay # 0, by considering only recur-
rencies of the exact order n. In the Jacobi-Perron algorithm there is always
even a; = 1; see (0.1) and what was explained before and afterwards.

(0)

4.) For ap; = 1 and t = 1 the two recurrent sequences pj ' and
pi?_l) with the first and last set of our standard initial values (0.4) are essen-
tially equal to each other, i.e., theydiffer onlybya translation of the sequence

variable k:

(n-1) 0)

(10.6) S

k > -n)

For, pg)) has the initial values, 1,0,---,0. Henceby the recurrency formula

p(()o) =a, = 1. Therefore pli(-)f-)l has the initial values 0,:--,0,1. Since for

(0) (n-1)
k

t = 1 the recurrency formulae for p and py are the same, (10.6)

follows.
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11. We now apply our general results to special cases of the generalized
Fibonacci numbers. We base these applications as far as possible on our
appropriately adapted main result (10.4) for cases with recurrency coefficient
a, 4 # 0. Only in the cases with a ;= 0, treated at the end, we have to go
back to the original result (8.8).

1.) The uniform case: aj,aq,*++,ap_1 =1; t=1.

In this case we found it convenient, in order to avoid confusion, to put
the recurrency order n on top of the sequence letter, as already done in

(9.3-5). Here (10.4) becomes simply

n(V) ~ Z kl kV + 1 o kn-Z
pk = Kk “ee K K X
Kgs+ ++ kp_g \"0 V-1 n-3

(11.1)
k o+ e - sy
X nk' k>0
n-2 V =0,++,n-1)°

with

Solm) = kg + -0+ + kn_2
The first and last of these sequences, essentially equal to each other accord-
ing to (10.6), are essentially equal to the sequence of generalized Fibonacci
numbers considered by the first author in his previous paper [3], and men-
tioned above in (9.3). For, adaptation to the initial values (9.4) of those latter
yields

n n n

In particular, for n = 2 there remains only one summation variable

kg = s, and (11.1) becomes

2
- >
wo -z (VAL
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These two sequences are essentially equal to the sequence (9.1) of the original
Fibonacci numbers. For, adaptation to the initial values (9.2) of those latter

yields
2 2
-0 _ 1) [k-1-s

(11.4) Fg = Ppq = Py 5 k>1) .
Notice that, unfortunately, the initial values (9.4) of the generalized Fibonacci
numbers

n

Fy

are not in accordance with the traditional initial values (9.2) of the original
Fibonacci numbers Fj, corresponding to the special case n = 2. By (11.2),

(11.4) the connection is

(11.5) F = F

i.e., a translation by 1. The traditional initial values (9.2) are in accordance

with the representation
€ - €'

where

whose analogue for the Lucas numbers is

Lk=ek+e'k k>0 .

The Lucas numbers, according to their initial values (9.2'), are obtained

by the linear combination
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1L.6) L=§(°)+3123(1)=Z k-3-8) ,4fk-2-5) 4>y
. k k-3 k-3 . s s - o

The representations (11.4)and (11.6) of the historical Fibonacci and Lucas
numbers are well known [5].

In all following cases we presuppose
a; = 1, t arbitrary ,

the latter with the only natural restriction t # 0.

2.) The multiple uniform case: all aj,***,a,_1 =a # 0.

In this case we have to attach to the expression (11.1) the powers of t
and a according to (10.4). In order to determine the exponent of a in the

simplest possible manner, observe that the sum of the exponents of ag,a4,*°*,

a 4 in (10.4) (or (10.5)) reduces to k +1 - Sy6m). But since here only aq,
ce08) 4 T2 whereas a; = 1, the exponent ky + eév) has to be subtracted.
Thus
V)
= X <k1 L 1). ..(kn—z)(k“Len—l'S"(m))x
kgst e ok \FO kyo1 kn-3 kno2
(11.7) "
W) < 4
k-i—= —So(‘m) k+1—-eo —Som)—ko
n
Xt a
k>0
V= 0,50 -1
with

So(m) = kO 4 een +kn_2 .

We illustrate this by the two lowest cases:

n =2

N k-] 3|k k-2kr
arg p? - Z(k+v-k)t ] ( k >0 );

i,

v =20,1
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n =3
p@ = 3 () (k- o+ Ky )\) tk- §]‘(ko+k1)ak—(2ko+k1 )
k kO’ki kO ki ’
oD - 3 [+ 1) k- o+ k) tk‘[l(g]'(ko"'h )ak+1—(2ko+k1)
(11.9) k ko’ki kO ki
p(2) S KV [k +1 - (kg + ky) tk—[%‘]-(kﬁki )ak+1_(2ko+k1)
k ko, ki ko ki

k>0 .

"

It would be worthwhile to confirm (11.8) from (7.1) by specializing there a,
1, b0=1, a3 = a, b1=ta.

3.) Reduced multiple uniform cases: some a, = 0, the other a,,

a#0 @ =1,.+,n-1).

a) Cases with a ;=2 # 0.

-1

As we saw in Section 10, in these cases, the general reduction (10.4) to
unrestricted summation is effective. The results are obtained from (10.4) by
simply adding the summation conditions

ko = Ky

" kv_l—lifav=0.

forall V' #v with a, = 0,

k

They effect that the correspondent binomial coefficients
( k,, ) o (k s+ 1)
kV, -1 kv—l

drop out becoming 1, and that the linear form Syér) is changed to no longer
homogeneous linear functions Sv(m) of the remaining summation variables.
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We illustrate this in the two cases where all but one or all of the coef-

ficients aq," - 2, o are specialized to 0.

@) Bpsttt B 4y B0t "R) o = 0; a, =a #=0

1<r<n-2)

kM\[k - 8 &,k k-] =[-8 (', k") k-S! (k',k"),
o

k! k ’

k>0
vV =0,",r-1

" " k " 1 "
v _ a (k + 1> <k -8, (k" k ))tk—[ﬁ]—sv(k',k )ak+1—Sv(k',k )
k"kn

Pk » -
(oosed
V =71, *++,n-2

1" 1 1 1" E [ 1 " ' 1 lent
(n-1) _ 5 (k )(k +1-8! k', k ))tk—[n]-sv(k sk k+1-8! (k) k)
k', k"

(11.10)

3

} a
P K .

(vx3%s)

with the linear functions

14 for vV =0,*°, r-1
Syk',km = k' + @ -1 -pk"+ 4V -r for V =r,---,n- 2
0 for v =n-1

and

S,k',k") = S, ,k"k") +k' = (r+ Dk'+ (0-1- k"

14 for V=0,°*, r -1
+d{V - r for V=r,°**,n-2

0 for V=n -1

nmnn

(ii) a
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®) ' k ' ®) _ar e
o) k+ e -8 ) tk—[ﬁ]-sv () kve, 5 )

' (,ez0,).

(11.11)
K K

=3 ||

with the linear functions

_ Y - 1Dk'+Vv for V = 0, ,n-2
Sv(k') - {(n - Dk for v =n-1
and
_ _ ynk'+v for v = 0,°-+,n-2
S;}(k') = SV(k') + k' = k! for V=n-1 2 .

We illustrate (11.10) and (11.11) by the lowest case:

In (11.10) for n = 3 the only possibility is r = 1. But then aj; = 1;
aj,ag =a # 0, and no coefficient is specialized to 0. Hence formulae (11.10)
must coincide with (11.9), which is confirmed at once.

Formulae (11.11) for n = 3 specialize to

K
k-|= -2k
0 k - 2k [3] k-3k!

K
k-|=|-2k'-1
(11.12) ) p(,}) - {:’ (k - 215' - 1>t [3] k-8K"-1 k>0 .

2
p(,() k!

K
> (k +1 - zw)tk'[’s']’ZK' Qt1-3K'
k!

The term with k = 0, k' = 0 in the second formula is an example for the
necessity of our deviating convention after (10.2), (10.2') about the binomial

coefficients with negative "numerator.'" From the recurrency



432 FIBONACCI QUARTERLY [Nov.

1)

1 1 1
pé) = 1p£3) + Opfz) + 1p__1
with
1 1 1
pfs) = 0’ pfz) = 1’ p£1> = ,
it is obvious that p(()l) = 0. But (11.12) would yield a non-zero value p(()l),

with negative exponents of t and a into thebargain, if the binomial coefficient
_é of the first term of the sum would be given the usual value 1.

b) Cases with 8, 17 0

As we saw in Section 10, in these cases, the general reduction (10.4) to

unrestricted summation is ineffective, and we can achieve our aim inthe same
way only if there is at least one consecutive pair of recurrency coefficients

a2

” with 0 < ¥' < n -2, which are not specialized to 0.

v+l

We shall consider here again only cases where all but one of the coef-
ficients ajs" %A , are specialized to 0; inthe case where all of them are 0,

the recurrency

~2

@)

W) _
P = Pg.p

is trivial.

Let a,=a # 0 be the only coefficient remaining intact. For r =1
the pair a, = 1, a,=2a satisfies the above condition, for r = 2,¢+-,n-2
however it is not satisfied. In both cases, we have to go back to our general
result (8.8).

@) ay=a #0; ag,**+,ap_1 =0

Here, in (8.8) are to be added the summation conditions

so that now

Sm) = 8KpK) = K+ (0 - 1)K .

Thus (8.8) becomes
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K
k-[E]-1 xx,
D > (Ko) Rt [“] 2

S K)=ktn\

= (K - l)tK—[%]-laK'Ko
S, K)=k+n\ K0 = 1
K
(11.13) K-|¥
= (Ilé )t [n]a,K_K0 k >0
S(Kg,K)=k\ ™0 v =0

K
w) _ (K) K‘[E]'l K-K,
pk = K t a
SKg,K)=k+n-v)\ "0
k>0
V=1,",n-1/J°

Since in the summation condition K, has coefficient 1, it can be eliminated,

putting

[k - - 1K for v

Ko = k+@-V) - (- 1K for Vv

nn

0
1,*+,n - 1

Making this substitution, we can however no longer silently pass overthe sum-
mation conditions 0 < Ky < K. Thus we obtain

N> ( K )tK'[lﬁ{]anK-k

(-1 k< \K @ - VK
k
14

K .
k+(n_v)-(n-1)K)><

k>0
v =1,"n-1

v
oo

(11.14)
)
Py

(n-1)K<k+(n-v)<nK (

y tK'[lﬂ ! K -k-(n-v)

We illustrate this by the lowest case:
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n =3
o s (xS

e (i ")’
2r<k<sle \© ~ 2K

K
K-[—]—l
(11.15) ) pg) - (k+§_ 2K>t 3 g Kk-2
2K< k+2<3K
k-
K-|=|-1
2) ( K ) [3] 3K-k-1
p = t a k > 0)
k 2K<KT1<3K k+1-2K -

Formulae (11.9), (11.12), (11.15) together cover all possible cases of general-
ized Fibonacci numbers of order n = 3 with time impulses.
(11) Ay sapn_1>» ar+1s"' 9an_1 = 0; aI’ =a # 0
2<r<n - 2

Here, in (8.8) are to be added the summation conditions

so that now
Stm) = S(K,K'") = rK + (o - DK' .

Thus (8.8) becomes

S ,K"=k+@n-v) \K

1l

S(K,K'")=k+(n-V)

(11.16)
.y (K')tK'_[%]aK'—K ( k>0 )
S, K"=k-v \ V=201
K
N K-S k>0
o g (o B i)
S (K, K" =k+(n-v)
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Since here in the summation condition, both variables K, K' have coefficients
r,n-r > 1, neither of them can be eliminated, so that by (11.16), other
than (11.13), has to be considered as the final result.

There is, however, one very special case in which a different possibility
of achieving unrestricted summation presents itself, viz., if both coefficients

r, n - r are equal, or else:
n = 2r

In this case the summation restriction is

k-v for v = 0,++,n/2 - 1

n =
-Z-CK"‘K’)" k+ @-v) for v =l’l/2:.."n_1

®)

Hence the sequences p contain non-zero terms:only for k = ¥ mod n/2,

respectively. Putting accordingly

%h+y for V=0,--—,-g--1
k = n n n (h_>_ 0) H
-Z-'h’l‘(V-E) forV=§,---,n—1
the restriction becomes
h forV=0,',%—1
K +K' =
h+1 for V=%’ ,n - 1
Here K', say, can be eliminated by the substitution
h - K for V=10,"t1, 5 -1

h+1-X for VvV =5,¢c,n-1

ol s

are

Thus in this very special case the non-zero terms of the sequences pl(: )

the unrestricted sums
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h

v) _ - K h‘[i]‘K h-2K h >0

pn “Z K t a v= 0,00 2_1
—2-h+l’ K

(11.17) b

) > (h +1- K) th'[i]'l-{ o h¥1-2K

p =
%h+(v-£21-) K K h >0
=4, .. n-1
v = 5 ’

We illustrate this by the lowest case:
b-[3]x
®) _ Z(h—K)t 2] n-2x (

n =4
p
2h+v K K

K
) -y (h +1- K) th'[i]'KahH_ZK < h > 0)

Pon+(@-2) ~ c K v=2,3)"

However formulae (11.17), (11.18) are immediate consequences of the

(11.18)

general result (11.8) for n = 2, because considering only the non-zero terms,
the corresponding recurrency formulae reduce to those for the generalized
Fibonacci numbers of order n = 2 withtime impulse. This shows the under-
lying true reason why reduction to unrestricted summation is possible in this
very special case {and in similar cases with any proper division of n instead
of 2 as well), in spite of what has been said in Section 10.
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