16. E. D. Rainville, Special Functions, Macmillan, New York, 1960.
17. J. Riordan, Combinatorial Identities, Wiley, New York, 1968.
18. J. Riordan, An Introduction to Combinatorial Analysis, New York, 1958.
19. G. Szegö, "Beiträge zur Theorie der Thetafunkentionen, Sitzungsberichte der Preussischen Akademie der Wissenschaften, " Phys.-Math. Klasse (1926), pp. 242-252.
20. G. N. Watson, "A Note on the Polynomials of Hermite and Laguerre," Journal of the London Mathematical Society, Vol. 13 (1938), pp. 29-32.
(Continued from page 356.)

REFERENCES

1. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, Vol. 2, No. 4, Dec. , 1964, pp. 277-289.
2. V. C. Harris and Carolyn C. Styles, "Generalized Fibonacci Sequences Associated with a Generalized Pascal Triangle," Fibonacci Quarterly, Vol. 4, No. 3, Oct. , 1966, pp. 241-248.
3. George Polya, Mathematical Discovery, Vol. 1, John Wileyand Sons, Inc. 9 New York, New York, 1962.
4. Mark Feinberg, "Fibonacci-Tribonacci," Fibonacci Quarterly, Vol. 1, No. 3, Oct. , 1963, pp. 71-74.
5. N. A. Draim and Marjorie Bicknell, "Sums of $n{ }^{\text {th }}$ Powers of Roots of a Given Quadratic Equation," Fibonacci Quarterly, Vol. 4, No. 2, April,
6. Mark Feinberg, "New Slants," Fibonacci Quarterly, Vol. 2, No. 3, Oct. , 1965, pp. 223-227.
7. W. S. Burnside and A. W. Panton, The Theory of Equations with an Introduction to the Theory of Binary Algebraic Forms, Dover Publications, New York, 1960, Chapter VIII, Vol. I, and Chap. XV, Vol. II.
8. N. B. Conkwright, Introduction to the Theory of Equations, Ginn and Company, 1957, Chapter X.
9. N. A. Draim and Marjorie Bicknell, "Equations Whose Roots are the $\mathrm{n}^{\text {th }}$ Powers of the Roots of a Given Cubic Equation," Fibonacci Quarterly, Vol. 5, No. 3, Oct., 1967, pp. 267-274.
10. V. E. Hoggatt, Jr., "New Angle on Pascal's Triangle," Fibonacci Quarterly, Vol. 6, No. 2, Oct. , 1968, pp. 221-234.
11. V. E. Hoggatt, Jr., "Generalized Fibonacci Numbers and the Polygonal Numbers," Journal of Recreational Mathematics, Vol. 1, No. 3, July 1968, pp. 144-150。
