NUMBERS GENERATED BY THE FUNCTION $\exp \left(1-e^{x}\right)$
 V. R. RAO UPPULURI and JOHN A. CARPENTER Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

A sequence of numbers $\left\{C_{n}, n=0,1,2, \cdots\right\}$ is defined from its generating function $\exp \left(1-e^{x}\right.$). A series representation for C_{n} (which is analogous to Dobinski's formula), a relationship with the Stirling numbers of the second kind, a recurrence relation between the C_{n} and a difference equation satisfied by C_{n} are obtained. The relationships between the Bell numbers and $\left\{C_{n}\right\}$ are also investigated. Finally, three determinantal representations for C_{n} are given. The 'Aitken Array' for $C_{n}, 1 \leq n \leq 21$ is given in the appendix.

1. INTRODUCTION AND SUMIMARY

While studying the moment properties of a discrete random variable associated with the Stirling numbers of the second kind, σ_{n}^{j}, we encountered an interesting sequence of numbers. More explicitly, let X be a discrete random variable with probability distribution

$$
\begin{equation*}
P\{X=j\}=\sigma_{n}^{j} / B_{n}, \quad j=1,2, \cdots, n \tag{1.1}
\end{equation*}
$$

where

$$
\sum_{j=1}^{n} \sigma_{n}^{j}=B_{n}, \quad n=1,2, \cdots
$$

are called the Bell numbers. The $k^{\text {th }}$ moment of the random variable X is given by

$$
\begin{equation*}
D\left(X^{k}\right)=\sum_{j=1}^{n} j^{k} \sigma_{n}^{j} / B_{n}=B_{n}^{(k)} / B_{n} \quad \text { (say) ; } \tag{1.2}
\end{equation*}
$$

*Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.
[Nov. and the first six values of $\mathrm{B}_{\mathrm{n}}^{(\mathrm{k})}$ are given by

$$
\begin{align*}
& B_{n}^{(0)}=B_{n} \\
& B_{n}^{(1)}=B_{n+1}-B_{n} \\
& B_{n}^{(2)}=B_{n+2}-2 B_{n+1} \\
& B_{n}^{(3)}=B_{n+3}-3 B_{n+2}+0 B_{n+1}+B_{n} \tag{1.3}\\
& B_{n}^{(4)}=B_{n+4}-4 B_{n+3}+0 B_{n+2}+4 B_{n+1}+B_{n} \\
& B_{n}^{(5)}=B_{n+5}-5 B_{n+4}+0 B_{n+3}+10 B_{n+2}+5 B_{n+1}-2 B_{n} .
\end{align*}
$$

This led us to look for an expression for $\mathrm{B}_{\mathrm{n}}^{(\mathrm{k})}$ in terms of the Bell numbers $B_{n+k}, B_{n+k-1}, \cdots, \cdots, B_{n}$ of the form

$$
\begin{equation*}
B_{n}^{(k)}=\sum_{i=0}^{k}\binom{k}{i} C_{i} B_{n+k-1} \tag{1.4}
\end{equation*}
$$

The first few $C_{i}, i=1,2, \cdots$ are given by $C_{0}=1, C_{1}=-1, C_{2}=0$, $C_{3}=1, C_{4}=1, C_{5}=-2, C_{6}=-9, C_{7}=-9$ and $C_{8}=50$. In this paper we will study some properties of the sequence $\left\{C_{n}\right\}$. In the next section, we give an ad hoc definition of $\left\{C_{n}\right\}$ in terms of the generating function $\exp \left(1-e^{x}\right)$ and prove some properties. We also derive a relationship between Stirling numbers of the second kind and the C_{n}. In Section 3, we will derive some relationships between the Bell numbers and the C_{n}. In Section 4, we will obtain some determinantal representations for the C_{n}. The proofs are closely related to the proofs (due to several authors) in the case of Bell numbers as summarized by Finlayson in his thesis [1].

2. THE NUMBERS GENERATED BY THE FUNCTION $\exp \left(1-e^{\mathrm{X}}\right)$

Definition: The sequence $\left\{C_{n}, n=0,1,2, \cdots\right\}$ is defined by its exponential generating function,

$$
\begin{equation*}
\sum_{k=0}^{\infty} C_{k} \frac{x^{k}}{k!}=\exp \left(1-e^{x}\right) \tag{2.1}
\end{equation*}
$$

From the power series expansion of $\exp \left(1-e^{x}\right)$ we will give an infinite series representation for C_{k}.

Proposition 1:

$$
\begin{equation*}
C_{k}=e \sum_{r=0}^{\infty}(-1)^{r} \frac{r^{k}}{r!}, \quad k=0,1,2, \cdots \tag{2.2}
\end{equation*}
$$

Proof: From the definition we note that C_{k} is the coefficient of x^{k} / k ! in the Maclaurin series expansion of $\exp \left(1-\mathrm{e}^{\mathrm{x}}\right.$).

$$
\begin{aligned}
\exp \left(1-e^{x}\right) & =e \sum_{r=0}^{\infty}(-1)^{r} e^{x r} / r! \\
& =e \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \sum_{k=0}^{\infty} \frac{x^{k} r^{k}}{k!} \\
& =e \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{r=0}^{\infty}(-1)^{r} \frac{r^{k}}{k!}
\end{aligned}
$$

which shows that

$$
C_{k}=e \sum_{r=0}^{\infty}(-1)^{r} \frac{r^{k}}{r_{r}^{m}}, \quad \mathrm{k}=0,1,2, \cdots
$$

We will use this series representation to obtain the relationship between the Stirling numbers of the second kind σ_{k}^{j} and C_{k}. We define $\sigma_{0}^{0}=1$ and $\sigma_{k}^{0}=$ $0, \mathrm{k}=1,2, \cdots$.

Proposition 2:

$$
\begin{equation*}
C_{k}=\sum_{j=1}^{k}(-1)^{j_{\sigma}}{ }_{k}^{j} \tag{2.3}
\end{equation*}
$$ have, according to Jordan [3],

$$
\begin{aligned}
r^{k} & =\sum_{j=0}^{k}\binom{r}{j} \frac{\Delta^{j}\left(0^{k}\right)}{j!} \\
C_{k} & =r \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} r^{k} \\
& =e \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!} \sum_{j=0}^{k}\binom{r}{j} \Delta^{j}\left(0^{k}\right) \\
& =e \sum_{r=0}^{\infty}{ }^{\infty}(-1)^{r} \sum_{j=0}^{k} \frac{\Delta^{j}\left(0^{k}\right)}{j!(r-j)!} \\
& =e \sum_{j=0}^{k} \frac{\Delta^{j}\left(0^{k}\right)}{j!}(-1)^{j} \sum_{r=j}^{\infty} \frac{(-1)^{r}(-1)^{-j}}{(r-j)!} \\
& =\sum_{j=0}^{k}(-1)^{j} \frac{\Delta^{j}\left(0^{k}\right)}{j!}
\end{aligned}
$$

which proves the result since $\Delta^{\mathrm{j}}\left(0^{\mathrm{k}}\right)=\mathrm{j}!\sigma_{\mathrm{k}}^{\mathrm{j}}$.
Customarily, Stirling numbers of the first kind are defined as numbers with alternate signs, whereas Stirling numbers of the second kind are defined as numbers with positive signs. The relation (2.3) for the C_{n}, and the corresponding relation for the Bell numbers B_{n}, given by

$$
B_{n}=\sum_{j=0}^{n} \sigma_{n}^{j}
$$

suggest that the Stirling numbers of the second kind may also be defined with alternate signs.

Using proposition 1, we now obtain a recursive relation between the C-numbers.

Proposition 3.

$$
\begin{equation*}
C_{k+1}=-\sum_{j=0}^{k}\binom{k}{j} C_{j} \quad k=0,1, \ldots ; C_{0}=1 . \tag{2.4}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
C_{k+1} & =e \sum_{r=1}^{\infty}(-1)^{r} \frac{r^{k+1}}{r!} \\
& =e \sum_{s=0}^{\infty}(-1)^{s+1} \frac{(s+1)^{k}}{s!} \\
& =e \sum_{s=0}^{\infty} \frac{(-1)^{s+1}}{s!} \sum_{j=0}^{k}\binom{k}{j} s{ }^{j} \\
& =-\sum_{j=0}^{k}\binom{k}{j} e \sum_{s=0}^{\infty} \frac{(-1)^{s} s^{j}}{j!=}=-\sum_{j=0}^{k}\binom{k}{j} C_{j} .
\end{aligned}
$$

In the next proposition we will show that C_{n} satisfies an $n^{\text {th }}$ order difference equation. As before, let Δ denote the difference operator and let E $=1+\Delta$, so that $E^{j} C_{0}=C_{j}, j=1,2, \cdots$.

Proposition 4:
(2.5) $\quad \Delta^{n} C_{1}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} C_{j+1}=-C_{n}, \quad n=1,2, \cdots$.

Proof. The first equality will be established by the binomial expansion of $(E-1)^{n}$, and the second equality follows from proposition 1 . For completeness, the proof is sketched on the following page.

$$
=e \sum_{r=1}^{\infty} \frac{(-1)^{r} r}{r!} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} r^{j}
$$

$$
=-e \sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{(r-1)!}(r-1)^{n}=-C_{n}
$$

The difference equation $\Delta^{n} C_{1}=-C_{n}$ can be used on computing $C_{1}, C_{2}, \cdots, C_{n}$ for small values of n. This computation can be arrangedin a triangular array

$$
\begin{array}{llllll}
\mathrm{C}_{1} & \Delta \mathrm{C}_{1} & \Delta^{2} \mathrm{C}_{1} & \Delta^{3} \mathrm{C}_{1} & \Delta^{4} \mathrm{C}_{1} & \cdots \\
\mathrm{C}_{2} & \Delta \mathrm{C}_{2} & \Delta^{2} \mathrm{C}_{2} & \Delta^{3} \mathrm{C}_{2} & \cdots & \\
\mathrm{C}_{3} & \Delta \mathrm{C}_{3} & \Delta^{2} \mathrm{C}_{3} & \cdots & & \tag{2.6}\\
\mathrm{C}_{4} & \Delta \mathrm{C}_{4} & \cdots & & & \\
\mathrm{C}_{5} & \cdots & & & &
\end{array}
$$

The first column gives us the value of $C_{n}, n=1,2,3, \cdots$, the second column gives us the first differences, and the $j^{\text {th }}$ column gives us the $j^{\text {th }}$ differences of $C_{n}, n=1,2,3, \cdots$. This table can be filled up as follows: Let us assume that we know $C_{1}=-1$. Equation (2.5) for $n=1$, with $\Delta C_{1}=-C_{1}$ enables us to find $C_{2}=C_{1}+\Delta C_{1}=0$. Now using (2.5) again for $n=2$, we find $\Delta^{2} C_{1}$ $=-C_{2}=0$. Since $\Delta^{2} C_{1}+\Delta C_{1}=\Delta C_{2}$ we find $\Delta C_{2}=1$ and since $\Delta^{2} C_{2}+C_{2}=$ C_{3}, we find $C_{3}=1$. Now using (2.5) again for $n=3$, with $\Delta^{3} C_{1}=-C_{3}$, we find $\Delta^{3} \mathrm{C}_{1}=-1$, and so on. A part of the difference array is as follows:

-1	1	0	-1	-1	2
0	1	-1	-2	1	
1	0	-3	-1		
1	-3	-4			
-2	-7				
-9					

The corresponding table for the Bell numbers B_{n} and their differences, based on $\Delta^{\mathrm{n}} \mathrm{B}_{1}=\mathrm{B}_{\mathrm{n}}$ is given in Table 1 of Finlayson [1]. He used the same method of construction, which is at times referred to as the Aitken array by Moser and Wyman [4]. In the appendix we give the Aitken array for the C_{n} for $1 \leq n \leq$ 21.

3. RELATIONSHIPS BETWEEN THE BELL NUMBERS B_{n}, AND THE C_{n}

It is well known (Riordan [5]) that the exponential generating function of the Bell numbers B_{n} is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\exp \left(e^{x}-1\right) \tag{3.1}
\end{equation*}
$$

Since the generating functions of

$$
b_{n}=\frac{B_{n}}{n!} \quad \text { and } \quad c_{n}=\frac{C_{n}}{n!}
$$

are reciprocals of each other, following Riordan [5] we could have defined the sequence $\left\{c_{n}\right\}$ as the inverse sequence of $\left\{b_{n}\right\}$. From this property we can easily derive the following

Proposition 5:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} B_{k} C_{n-k}=0, \quad n=1,2, \cdots, \quad \text { with } \quad B_{0}=C_{0}=1 \tag{3.2}
\end{equation*}
$$

A less obvious relationship between B_{n} and C_{n} is given by the following: Proposition 6:

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} C_{j} B_{n+1-j}=1, \quad n=0,1,2, \cdots \tag{3.3}
\end{equation*}
$$

Proof: Differentiating (3.1) with respect to x, we obtain

$$
\sum_{k=1}^{\infty} B_{k} \frac{x^{k-1}}{(k-1)!}=e^{x} \exp \left(e^{x}-1\right)
$$

Multiplying this by the exponential generating function of C_{n} we obtain

$$
\left(\sum_{j=0}^{\infty} C_{j} \frac{x^{j}}{j!}\right)\left(\sum_{k=1}^{\infty} B_{k} \frac{x^{k-1}}{(k-1)!}\right)=e^{x}
$$

which implies that

$$
\sum_{n=0}^{\infty} B_{1}^{(n)} \frac{x^{n}}{n!}=e^{x}
$$

where

$$
B_{1}^{(n)}=\sum_{j=0}^{n}\binom{n}{j} C_{j} B_{n+1-j}
$$

as defined in the introduction.
Now it follows that $B_{1}^{(n)}=1, n=0,1,2, \cdots$, since

$$
e^{x}=\sum_{n=0}^{\infty} 1 \frac{x^{n}}{n!}
$$

is the exponential generating function of the sequence with unity in every place. A 'dual' to proposition 6 can be stated as

Proposition 7:

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} B_{j} C_{n+1-j}=-1, \quad n=0,1,2, \cdots \tag{3.4}
\end{equation*}
$$

Proof. This follows along the samelines as that of Proposition 6, where we now differentiate the exponential generating function of the C_{n}.

4. DETERMINANTAL REPRESENTATIONS OF C_{n}

We noted in Section 3 that the sequences

$$
\left\{b_{n}\right\}=\left\{\frac{B_{n}}{n!}\right\} \quad \text { and } \quad\left\{c_{n}\right\}=\left\{\frac{C_{n}}{n!}\right\}
$$

are inverse sequences as defined on page 25 of Riordan [5]. On page 45, Riordan gives as a problem the representation of $n^{\text {th }}$ number of the sequence $\left\{a_{n}^{\prime}\right\}$ as a determinant of the elements of the inverse sequence $\left\{a_{n}\right\}$. This says

$$
a_{n}^{\prime}=(-1)^{n} a_{0}^{-n-1}\left|\begin{array}{lllll}
a_{1} & a_{0} & 0 & \cdots \\
a_{2} & a_{1} & a_{0} & \cdots \\
a_{3} & a_{2} & a_{1} & \cdots \\
\vdots & \vdots & \vdots & a_{0} \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{0} \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{1}
\end{array}\right|=(-1)^{n_{n} a_{0}^{-n-1} \delta_{n} \quad \text { (say) } . \text {. }} \begin{aligned}
& \\
&
\end{aligned}
$$

The following recursive relation for δ_{n} can be shown,

$$
\delta_{n}=\sum_{k=0}^{n-1}(-1)^{k} a_{0}^{k} a_{k+1}{ }_{n-k-1}, \quad \delta_{0}=1
$$

Applying this result for the Bell numbers B_{n}, and C_{n} we will have

Proposition 8:
a)
(4.1)

$$
\frac{C_{n}}{n!}=(-1)^{n}\left|\begin{array}{lllll}
\frac{B_{1}}{1!} & B_{0} & & \\
\frac{B_{2}}{2!} & \frac{B_{1}}{1!} & B_{0} & \\
\frac{B_{3}}{3!} & \frac{B_{2}}{2!} & \frac{B_{1}}{1!} & & \\
\cdots & \cdots & \cdots & \cdots & B_{0} \\
\frac{B_{n}}{n!} & \frac{B_{n-1}}{(n-1)!} & \frac{B_{n-2}}{(n-2)!} & \frac{B_{1}}{1!}
\end{array}\right|=(-1)^{n} \xi_{n} \quad \text { (say) }
$$

(4.2)
b) $\quad(-1)^{n} \frac{C_{n}}{n!}=\sum_{k=0}^{n-1}(-1)^{k} \frac{B_{k+1}}{(k+1)!} \xi_{n-k-1}$.

In Proposition 3, we have shown that

$$
C_{n+1}=-\sum_{j=0}^{n}\binom{n}{j} C_{j}, \quad n=0,1,2, \cdots
$$

with $\mathrm{C}_{0}=1$. From this nonsingular system of equations, using Cramer's rule, we can derive the following:

Proposition 9:
(4.3)

$$
C_{n+1}=(-1)^{n}\left|\begin{array}{ccccccc}
1 & 1 & & & & & \\
1 & 1 & 1 & & & 0 & \\
1 & 2 & 1 & 1 & & & \\
1 & 3 & 3 & 1 & 1 & & \\
& \vdots & & & & & \\
\binom{n}{0} & \binom{n}{1} & \binom{n}{2} & \cdots & \cdots & \cdots & \cdots
\end{array}\binom{n}{n}\right|
$$

The corresponding determinantal representation for the Bell numbers which seems to be due to Ginsburg [2], is also quoted by Finlayson [1]. Ginsburg [2] derived another determinantal expression for the Bell numbers (also quoted by Finlayson [1]) and the corresponding representation for the C-numbers is given by the following:

Proposition 10:

$$
C_{n+1}=(-1)^{\mathrm{n}+1}\left|\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & \\
\frac{1}{1!} & 1 & 2 & 0 & 0 & \\
\frac{1}{2!} & \frac{1}{1!} & 1 & 3 & 0 & \\
\frac{1}{3!} & \frac{1}{2!} & \frac{1}{1!} & 1 & 4 \cdots & \\
\vdots & \vdots & \because & & & n \\
\frac{1}{n!} & \frac{1}{(n-1)!} & \frac{1}{(n-2)!} & \cdots & 1
\end{array}\right|
$$

ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to Dr. A. S. Householder, for his comments on an earlier draft.

REFERENCES

1. H. Finlayson, "Numbers Generated by $\exp \left(e^{x}-1\right)$," Masters thesis, 1954, University of Alberta, Canada.
2. J. Ginsburg, "Iterated Exponentials," Scripta Mathematica, 11, 1945, pp. 340-353.
3. C. Jordan, Calculus of Finite Differences, Chelsea Publishing Co. , New York, 1947.
4. L. Moser and M. Wyman, "On an Array of Aitken," Trans. Roy. Soc. Canada, 48 (1954), pp. 31-37.
5. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
